73 resultados para Plasma deposition
Resumo:
Thin films were deposited by plasma enhanced chemical vapor deposition from titanium (IV) ethoxide (TEOT)-oxygen-helium mixtures. Actinometric optical emission spectroscopy was used to obtain the relative plasma concentrations of the species H, CH, O and CO as a function of the percentage of oxygen in the feed, R(ox). The concentrations of these species rise with increasing R(ox) and tend to fall for R(ox) greater than about 45%. As revealed by a strong decline in the emission intensity of the actinometer Ar as R(ox) was increased, the electron mean energy or density (or both) decreased as greater proportions of oxygen were fed to the chamber. This must tend to reduce gas-phase fragmentation of the monomer by plasma electrons. As the TEOT flow rate was fixed, however, and since the species H and CH do not contain oxygen, the rise in their plasma concentrations with increasing R(ox) is explained only by intermediate reactions involving oxygen or oxygen-containing species. Transmission infrared (IRS) and X-ray photoelectron (XPS) spectroscopies were employed to investigate film structure and composition. The presence of CH(2), CH(3), C=C, C-O and C=O groups was revealed by IRS. In addition, the presence of C-O and C=O groups was confirmed by XPS, which also revealed titanium in the +4 valence state. The Ti content of the films, however, was found to be much less than that of the monomer material itself. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Diverse amorphous hydrogenated carbon and similar films containing additional elements were produced by Plasma Enhanced Chemical Vapor Deposition (PECVD) and by Plasma Immersion Ion Implantation and Deposition (PIIID). Thus a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:O:Si were obtained, starting from the same feed gases, using both techniques. The same deposition system supplied with radiofrequency (RF) power was used to produce all the films. A cylindrical stainless steel chamber equipped with circular electrodes mounted horizontally was employed. RF power was fed to the upper electrode; substrates were placed on the lower electrode. For PIIID negative high tension pulses were also applied to the lower electrode. Raman spectroscopy confirmed that all the films are amorphous. Chemical characterization of each pair of films was undertaken using Infrared Reflection Absorption Spectroscopy and X-ray Photoelectron Spectroscopy. The former revealed the presence of specific structures, such as C-H, C-O, O-H. The latter allowed calculation of the ratio of hetero-atoms to carbon atoms in the films, e. g. F:C, N:C, and Si:C. Only relatively small differences in elemental composition were detected between films produced by the two methods. The deposition rate in PIIID is generally reduced in relation to that of PECVD; for a-C:H:Cl films the reduction factor is almost four.
Resumo:
Thin polymer films were deposited from acetylene and argon mixtures by plasma immersion ion implantation and deposition. The effect of the pulse frequency, v, on molecular structure, optical gap, contact angle and hardness of the films was investigated. It was observed progressive dehydrogenation of the samples and increment in the concentration of unsaturated carbon bonds as the pulse frequency was increased. Film hardness and contact angle increased and optical gap decreased with v. These results are interpreted in terms of the chain unsaturation and crosslinking.
Resumo:
The commercial pure titanium (cp-Ti) is currently being used with great success in dental implants. In this work we investigate how the cp-Ti implants can be improved by modifying the metal surface morphology, on which a synthetic material with properties similar to that of the inorganic part of the bone, is deposited to facilitate the bone/implant bonding. This synthetic material is the hydroxyapatite, HA, a calcium-phosphate ceramic. The surface modification consists in the application of a titanium oxide (TiO2) layer, using the thermal aspersion - plasma spray technique, with posterior deposition of HA, using the biomimetic method. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques have been used for characterizing phases, microstructures and morphologies of the coatings. The TiO2 deposit shows a mixture of anatase, rutilo and TiO2-x phases, and a porous and laminar morphology, which facilitate the HA deposition. After the thermal treatment, the previously amorphous structured HA coating, shows a porous homogeneous morphology with particle size of about 2-2.5 μm, with crystallinity and composition similar to that of the biological HA.
Resumo:
Plasma immersion ion implantation (PIII) process is a three dimensional surface modification method that is quite mature and well known to the surface engineering community nowadays, especially to those working in the field of plasma-materials interaction, aiming at both industrial and academic applications. More recently, deposition methods have been added to PIII, the PIII&D, opening possibilities of broader range of applications of these techniques. So, PIII&D is becoming a routine method of surface modification, with the advantage of pushing up the retained dose levels limited by the sputtering due to ion implantation. Therefore, well adherent, thick, three-dimensional films without stress are possible to be achieved, at relatively low cost, using PIII&D. In this paper, we will discuss about a few PIII and PIII&D experiments that have been performed recently to achieve surface improvements in different materials: 1 - high temperature nitrogen PIII in Ti6Al4V alloy in which a deep nitrogen rich treated layer resulted in surface improvements as increase of hardness, corrosion resistance and resistance to wear of the Ti alloy; 2 - nanostructures in ZnO films, obtained by PIII&D of vaporized & ionized Zn source; 3 - combined implantation and deposition of calcium for biomaterial activity of Ti alloy (PIII&D), allowing the growth of hydroxyapatite in a body solution; 4 - magnetron sputtering deposition of Cr that was enhanced by the glow discharge Ar plasma to allow implantation and deposition of Cr on SAE 1070 steel (PIII&D) resulting in surfaces with high resistance to corrosion; and 5 - implantation of nitrogen by ordinary PIII into this Cr film, which improved resistance to corrosion, while keeping the tribological properties as good as for the SAE 1070 steel surface. © 2012 Elsevier B.V.
Resumo:
Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD. ©2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R(C), which was varied from 0 to 80%. Deposition rates of 80 nm min (1) were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at similar to 47 at.% for R(C)>= 40%. The refractive index and optical gap, E(04), of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from similar to 40 degrees to similar to 77 degrees. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the effect of nitrogen Plasma Immersion Ion Implantation (PIII) on chemical structure, refraction index and surface hardness of plasma-polymerized hexamethyldisilazane (PPHMDSN) thin films. Firstly, polymeric films were deposited at 13.56 MHz radiofrequency (RF) Plasma Enhanced Chemical Vapour Deposition (PECVD) and then, were treated by nitrogen PIII from 15 to 60 min. Fourier Transformed Infrared (FTIR) spectroscopy was employed to analyse the molecular structure of the samples, and it revealed that vibrations modes at 3350 cm(-1), 2960 cm(-1), 1650 cm(-1), 1250 cm(-1) and 1050 cm(-1) were altered by nitrogen PIII. Visible-ultraviolet (vis-UV) spectroscopy was used to evaluate film refractive index and the results showed a slight increase from 1.6 to 1.8 following the implantation time. Nanoindentation revealed a surface hardness rise from 0.5 to 2.3 GPa as PIII treatment time increased. These results indicate nitrogen PIII is very promising in improving optical and mechanical properties of PPHMDSN films.
Resumo:
This work was performed to verify the chemical structure, mechanical and hydrophilic properties of amorphous hydrogenated carbon films prepared by plasma enhanced chemical vapor deposition, using acetylene/argon mixture as monomer. Films were prepared in a cylindrical quartz reactor, fed by 13.56 MHz radiofrequency. The films were grown during 5 min, for power varying from 25 to 125 W at a fixed pressure of 9.5 Pa. After deposition, all samples were treated by SF(6) plasma with the aim of changing their hydrophilic character. Film chemical structure investigated by Raman spectroscopy, revealed the increase of sp(3) hybridized carbon bonds as the plasma power increases. Hardness measurements performed by the nanoindentation technique showed an improvement from 5 GPa to 14 GPa following the increase discharge power. The untreated films presented a hydrophilic character, which slightly diminished after SF(6) plasma treatment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives. To test the hypothesis that multiple firing and silica deposition on the zirconia surface influence the bond strength to porcelain.Materials and methods. Specimens were cut from yttria-stabilized zirconia blocks and sintered. Half of the specimens (group S) were silica coated (physical vapor deposition (PVD)) via reactive magnetron sputtering before porcelain veneering. The remaining specimens (group N) had no treatment before veneering. The contact angle before and after silica deposition was measured. Porcelain was applied on all specimens and submitted to two (N2 and S2) or three firing cycles (N3 and S3). The resulting porcelain-zirconia blocks were sectioned to obtain bar-shaped specimens with 1 mm(2) of cross-sectional area. Specimens were attached to a universal testing machine and tested in tension until fracture. Fractured surfaces were examined using optical microscopy. Data were statistically analyzed using two-way ANOVA, Tukey's test (alpha = 0.05) and Weibull analysis.Results. Specimens submitted to three firing cycles (N3 and S3) showed higher mean bond strength values than specimens fired twice (N2 and S2). Mean contact angle was lower for specimens with silica layer, but it had no effect on bond strength. Most fractures initiated at porcelain-zirconia interface and propagated through the porcelain.Significance. The molecular deposition of silica on the zirconia surface had no influence on bond strength to porcelain, while the number of porcelain firing cycles significantly affected the bond strength of the ceramic system, partially accepting the study hypothesis. Yet, the Weibull modulus values of S groups were significantly greater than the m values of N groups. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This work describes an XPS investigation of plasma-deposited polysiloxane films irradiated with 170 keV He+ ions at fluences, Phi, ranging from 1 x 10(14) to 1 x 10(16) cm(-2). Modifications in the atomic concentrations of the surface atoms with (D were revealed by changes in the [O]/[Si], [O]/[C] and [C]/[Si] atomic ratios. Surface chemical structure modifications were evidenced by the increasing C1s peak width and asymmetry as Phi was increased, due to the formation of ether and carboxyl functionalities. Moreover, structural transformations were indicated by the positive binding energy shift of the Si2p peaks, due to the increasing Si oxidation. Correlations of the XPS data with other results from previous work on polysiloxanes illustrate the role of ion beam-induced bond breaking on the structural modifications.
Resumo:
Polymer films were grown in rf discharges containing different proportions of C2H2 and SF6. Quantitative optical emission spectrometry (actinometry) was used to follow the trends in the plasma concentrations of the species H and F, and more tentatively, of CH, CF, and CF2, as a function of the feed composition. Infrared spectroscopy revealed the density of CH and CF bonds in the deposited material. As the partial pressure of SF6 in the feed was increased, the degree of fluorination of the polymer also rose. The form of the dependency of the deposition rate on the proportion of SF6 in the feed was in good qualitative agreement with the activated growth model. From transmission ultraviolet visible spectroscopy data the refractive index and the absorption coefficient of the polymers were calculated as a function of the deposition parameters. Since the optical gap depended to some extent upon the degree of fluorination, it could, within limits, be determined by a suitable choice of the proportion of SF6 in the feed. A qualitative explanation of this relationship is given.