116 resultados para Phyllosoma complex species
Resumo:
The surface-spreading technique for visualization of whole cell synaptonemal complex (SC) complements was employed to study the chromosome synapsis in spermatocytes of P. mesopotamicus, C. macropomum and in their interspecific hybrid (tambacu) with the main objective to analyze possible errors in chromosome pairing that could result in hybrid sterility. SC analysis showed that the parental species P. mesopotamicus and C. macropomum have 27 bivalents homogeneously synapsed. The SC in spermatocytes from the hybrid tambacu showed gross meiotic configurations in all cells analyzed. The spermatocytes exhibited a few chromosomes or well synapsed chromosome segments, while many chromosome segments did not have any synapsis. This result, allied to other genetical and cytogenetical evidence, reinforces the hypothesis that the hybrid tambacu is sterile. Further studies involving other aspects, such as behavior and physiology, should be conduced before the introduction of these hybrids in rivers and lakes.
Resumo:
In Anastrepha sp.2 aff. fraterculus, the egg-cell harbours a large population of endosymbionts. The bacteria were identified as belonging to genus Wolbachia by PCR assay using primers of the ftsZ gene followed by sequencing of the amplified band. Newly deposited eggs stained in toto by Hoechst show that the bacteria are unevenly dispersed throughout the egg-cell, with a higher accumulation at the posterior pole, and that the degree of infestation varies from egg to egg. Analysis by transmission electron microscopy shows that bacteria are present in the female germ line of embryonic and larval stages, as well as in the different cell types of the ovaries at the adult stage. Mature ova within the follicles harbour a large population of the symbionts. The results indicate the existence of a transovarian transmission of the endosymbionts in this fly.
Resumo:
The analysis of interactions between lineages at varying levels of genetic divergence can provide insights into the process of speciation through the accumulation of incompatible mutations. Ring species, and especially the Ensatina eschscholtzii system exemplify this approach. The plethodontid salamanders E. eschscholtzii xanthoptica and E. eschscholtzii platensis hybridize in the central Sierran foothills of California. We compared the genetic structure across two transects (southern and northern Calaveras Co.), one of which was resampled over 20 years, and examined diagnostic molecular markers (eight allozyme loci and mitochondrial DNA) and a diagnostic quantitative trait (color pattern). Key results across all studies were: (1) cline centers for all markers were coincident and the zones were narrow, with width estimates of 730 m to 2000 m; (2) cline centers at the northern Calaveras transect were coincident between 1981 and 2001, demonstrating repeatability over five generations; (3) there were very few if any putative F1s, but a relatively high number of backcrossed individuals in the central portion of transects: and (4) we found substantial linkage disequilibrium in all three studies and strong heterozygote deficit both in northern Calaveras, in 2001, and southern Calaveras. Both linkage disequilibrium and heterozygote deficit showed maximum values near the center of the zones. Using estimates of cline width and dispersal, we infer strong selection against hybrids. This is sufficient to promote accumulation of differences at loci that are neutral or under divergent selection, but would still allow for introgression of adaptive alleles. The evidence for strong but incomplete isolation across this centrally located contact is consistent with theory suggesting a gradual increase in postzygotic incompatibility between allopatric populations subject to divergent selection and reinforces the value of Ensatina as a system for the study of divergence and speciation at multiple stages. © 2005 The Society for the Study of Evolution. All rights reserved.
Resumo:
Five species of feather mites originally described in the genus Pterodectes by Vladimir černý (1974) are redescribed: Pterodectes havliki, P. maculatus , P. reticulatus, P. storkani, P. thraupicola and P. troglodytis. The formerly unknown males of P. thraupicola and P. reticulatus and the female of P. maculatus are described for the first time. A synopsis of known species of the Pterodectes generic complex is presented, and species content of the genus Pterodectes is revised. Fifteen species previously included in this genus are transferred to the new genus Amerodectes gen. n.: Amerodectes atyeoi (OConnor et al., 2005) comb. n., A. bilineatus (Berla, 1958) comb. n., A. geothlypis (Berla, 1973) comb. n., A. gracilis (Trouessart, 1885) comb. n., A. maculatus comb. n., A. molothrus (Mironov, 2008) comb. n., A. nordestensis (Berla, 1958) comb. n., A. paroariae (Mironov, 2008) comb. n., A. pitangi (Mironov, 2008) comb. n., A. tangarae (Mironov, 2008) comb. n., A. turdinus (Berla, 1959) comb. n., A. sialiarum (Stoll, 1893) comb. n., A. storkani (černý, 1974) comb. n., A. thraupicola (cčerný, 1974) comb. n., and A. troglodytis (černý, 1974) comb. n. Five species are transferred to the genus Tyrannidectes Mironov, 2008: Tyrannidectes amaurochalinus (Hernandes et Valim, 2006) comb. n., T. banksi (Valim et Hernandes, 2008) comb. n., T. crassus (Trouessart, 1885) comb. n., T. fissuratus (Hernandes et Valim, 2005) comb. n., and T. reticulatus (Cerný, 1974) comb. n.; and one species is moved to the genus Metapterodectes Mironov, 2008: Metapterodectes muticus (Banks, 1909) comb. n. The genus Pterodectes remains monotypic, with the type species P. rutilus Robin, 1877. © Acarina 2010.
Resumo:
Bemisia tabaci is one of the most important global agricultural insect pests, being a vector of emerging plant viruses such as begomoviruses and criniviruses that cause serious problems in many countries. Although knowledge of the genetic diversity of B. tabaci populations is important for controlling this pest and understanding viral epidemics, limited information is available on this pest in Brazil. A survey was conducted in different locations of São Paulo and Mato Grosso states, and the phylogenetic relationships of B. tabaci individuals from 43 populations sampled from different hosts were analysed based on partial mitochondrial cytochrome oxidase 1 gene (mtCOI) sequences. According to the recently proposed classification of the B. tabaci complex, which employs the 3.5% mtCOI sequence divergence threshold for species demarcation, most of the specimens collected were found to belong to the Middle East-Asia Minor 1 species, which includes the invasive populations of the commonly known B biotype, within the Africa/Middle East/Asia Minor high-level group. Three specimens collected from Solanun gilo and Ipomoea sp. were grouped together and could be classified in the New World species that includes the commonly known A biotype. However, six specimens collected from Euphorbia heterophylla, Xanthium cavanillesii and Glycine maxima could not be classified into any of the 28 previously proposed species, although according to the 11% mtCOI sequence divergence threshold, they belong to the New World high-level group. These specimens were classified into a new recently proposed species named New World 2 that includes populations from Argentina. Middle East-Asia Minor 1, New World and New World 2 were differentiated by RFLP analysis of the mtCOI gene using TaqI enzyme. Taq I analysis in silico also differentiates these from Mediterranean species, thus making this method a convenient tool to determine population dynamics, especially critical for monitoring the presence of this exotic pest in Brazil. © 2012 Blackwell Verlag, GmbH.
Resumo:
Phylogenetic approaches based on mitochondrial DNA variation (fragments of Cyt B and 16S ribosomal RNA) have revealed Triatoma sherlocki as the most recent species addition to the Triatoma brasiliensis species complex; a monophyletic group which includes T. brasiliensis, Triatoma melanica, and Triatoma juazeirensis. T. sherlocki is the most differentiated among all species of this complex: it is unable to fly, possesses longer legs than the other members, and has reddish tonality in some parts of its exochorion. We question whether these species are reproductively compatible because of this pronounced morphological differentiation, and therefore, we present a series of cross breeding experiments that test compatibility between T. sherlocki and other members of the T. brasiliensis complex. We extended our analyses to include crosses between T. sherlocki and Triatoma lenti, because the latter has been suggested as a possible member of this complex. T. sherlocki male. ×. T. lenti female pairs failed to produce hybrids. All other crosses of T. sherlocki and members of T. brasiliensis species complex, as well as backcrosses, produced viable offspring through the third generation. This study stresses the importance of searching for the features that may isolate members of the T. brasiliensis species complex. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as 'moonlighting'proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitratelyase, malatesynthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host.
Resumo:
From the examination of extensive comparative material currently identified as M. jamesi we verified that there are, at least, three new species under this name. These, along with M. jamesi and M. justae, form what we herein called the M. jamesi species complex, by sharing the following group of characters: a short maxilla, with its distal margin not exceeding anterior third of the second infraorbital; first through third teeth of the inner row of premaxilla and first and second dentary teeth with cusps arranged in a pronounced arch, humeral spot positioned between the fourth and seventh scales of the lateral line and extending up to four scale rows above the lateral line and one scale row below the lateral line, and a vertically oval to round spot at the base of the caudal fin rays. Moenkhausia ischyognatha sp. n., from Rio Xingu basin, differs from the other species of the complex by its lower head depth. Moenkhausia alesis sp. n., from the river system Tocantins-Araguaia, differs from M. jamesi, M. ischyognatha, and M. sthenosthoma by the number of scale rows above the lateral line. Moenkhausia sthenosthoma sp. n., from the Rio Madeira basin, differs from M. jamesi by the number of scale rows between the lateral line and the midventral scale series. Moenkhausia justae can be diagnosed from the other species of the complex by having a tri to pentacuspidate tooth on the maxilla.
Resumo:
Understanding the possible methodologies for the rapid and inexpensive identification of fungal infections is essential for disease diagnosis, but there are some limitations. To help with this problem, serological methods that detect antigens or antibodies are widely used and are useful for the diagnosis of paracoccidioidomycosis (PCM) through the detection of gp43, which is the main antigen employed for the immunodiagnosis of this disease caused by Paracoccidioides brasiliensis. However, the use of gp43 has become restricted because it was recently found that this marker is not identified in the infections caused by Paracoccidioides lutzii. Therefore, it is necessary to identify new antigens in both species or antigens specific for P. lutzii to decrease the morbidity and/or mortality associated with PCM. This review provides a discussion of new diagnostic challenges after the recent discoveries regarding the taxonomy of the Paracoccidioides genus.
Resumo:
Mithrax hispidus (Herbst, 1790) is a mithracid majoid crab occurring on sand, corals and rocks in waters of the western Atlantic. Larval development consists of two zoeal stages and a megalopa. All larval stages are described in detail based on multiple cultures. Prior to this study, larvae of M hispidus were considered to be different and grouped separately from most other larvae of Mithrax, primarily based on setation. A detailed morphological examination, based on the same specimens used for the first description, revealed that the inclusion of M hispidus in a separate group is not valid as zoeae now fully agree with the morphological characteristics defined for the other group of five Mithrax species, including M. pleuracanthus, M. verrucosus, M. caribbaeus, M. coryphe, and M. forceps. This illustrates the importance of precisely recording morphological details such as setation, which may otherwise lead to incorrect interpretations with regard to perceived taxonomic affinities. A comparison of larvae of the Mithrax -Mithraculus species complex does not support separation into two genera. Larval evidence supports the recently suggested adult-based synonymization of M caribbaeus with M. hispidus.