130 resultados para Phospholipase A(2) homolog


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lys49-Phospholipase A(2) (Lys49-PLA(2)) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. With the aim of determining the structural basis for this novel activity, we have solved the crystal structure of myotoxin-II, a Lys49-PLA(2) isolated from the venom of Cerrophidion (Bothrops) godmani (godMT-II) at 2.8 Angstrom resolution by molecular replacement. The final model has been refined to a final crystallografic residual (R-factor) of 18.8% (R-free = 28.2%), with excellent stereochemistry. godMT-II is also monomeric in the crystalline state, and small-angle X-ray scattering results demonstrate that the protein is monomeric in solution under fisicochemical conditions similar to those used in the crystallographic studies. (C) 1999 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MjTX-II, a myotoxic phospholipase A(2) (PLA(2)) homologue from Bothrops moojeni venom, was functionally and structurally characterized. The MjTX-II characterization included: (i) functional characterization (antitumoral, antimicrobial and antiparasitic effects); (ii) effects of structural modifications by 4-bromophenacyl bromide (BPB), cyanogen bromide (CNBr), acetic anhydride and 2-nitrobenzenesulphonyl fluoride (NBSF); (iii) enzymatic characterization: inhibition by low molecular weight heparin and EDTA; and (iv) molecular characterization: cDNA sequence and molecular structure prediction. The results demonstrated that MjTX-II displayed antimicrobial activity by growth inhibition against Escherichia coli and Candida albicans, antitumoral activity against Erlich ascitic tumor (EAT), human breast adenocarcinoma (SK-BR-3) and human T leukemia cells (JURKAT) and antiparasitic effects against Schistosoma mansoni and Leishmania spp., which makes MjTX-II a promising molecular model for future therapeutic applications, as well as other multifunctional homologous Lys49-PLA(2)S or even derived peptides. This work provides useful insights into the structural determinants of the action of Lys49-PLA2 homologues and, together with additional strategies, supports the concept of the presence of others bioactive sites distinct from the catalytic site in snake venom myotoxic PLA(2)s. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystals of a myotoxic phospholipase A(2) from Bothrops neuwiedi pauloensis have been obtained. They diffracted at 2.5 Angstrom resolution using a synchrotron radiation source and belong to space group P3(1)21. Preliminary analysis shows that there are two molecules in the asymmetric unit. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BnSP-7, a Lys49 myotoxic phospholipase A, homologue from Bothrops neuwiedi pauloensis venom, was structurally and functionally characterized. Several biological activities were assayed and compared with those of the chemically modified toxin involving specific amino acid residues, the cDNA produced from the total RNA by RT-PCR contained approximately 400 bp which codified its 121 amino acid residues with a calculated pi and molecular weight of 8.9 and 13,727, respectively. Its amino acid sequence showed strong similarities with several Lys49 phospholipase A, homologues from other Bothrops sp, venoms. By affinity chromatography and gel diffusion, it was demonstrated that heparin formed a complex with BnSP-7, held at least in part by electrostatic interactions. BnSP-7 displayed bactericidal activity and promoted the blockage of the neuromuscular contraction of the chick, biventer cervicis muscle. In addition to its in vivo myotoxic and edema-inducing activity, it disrupted artificial membranes, Both BnSP-7 and the crude venom released creatine kinase from the mouse gastrocnemius muscle and induced the development of a dose-dependent edema. His, Tyr, and Lys residues of the toxin were chemically modified by 4-bromophhenacyl bromide (BPB), 2-nitrobenzenesulfonyl fluoride (NBSF), and acetic anhydride (AA), respectively. Cleavage of its N-terminal octapeptide was achieved with cyanogen bromide (CNBr), the bactericidal action of BnSP-7 on Escherichia coli was almost completely abolished by acetylation or cleavage of the N-terminal octapeptide, the neuromuscular effect induced by BnSP-7 was completely inhibited by heparin, BPB, acetylation, and CNBr treatment. The creatine kinase releasing and edema-inducing effects were partially inhibited by heparin or modification by BPB and almost completely abolished by acetylation or cleavage of the N-terminal octapeptide, the rupture of liposomes by BnSP-7 and crude venom was dose and temperature dependent. Incubation of BnSP-7 with EDTA did not change this effect, suggesting a Ca2+-independent membrane lytic activity. BnSP-7 cross-reacted with antibodies raised against B. moojeni (MjTX-II), B. jararacussu (BthTX-I), and B. asper (Basp-II) myotoxins as well as against the C-terminal peptide (residues 115-129) from Basp-II. (C) 2000 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acidic phospholipase A(2) (PLA(2)) isolated from Bothrops jararacussu snake venom was crystallized with two inhibitors: alpha-tocopherol (vitamin E) and p-bromophenacyl bromide (BPB). The crystals diffracted at 1.45- and 1.85-Angstrom resolution, respectively, for the complexes with alpha-tocopherol and p-bromophenacyl bromide. The crystals are not isomorphous with those of the native protein, suggesting the inhibitors binding was successful and changes in the quaternary structure may have occurred. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipases A(2) constitute the major components from Bothrops snake venoms and have been extensively investigated not only because they are relatively very abundant in these venoms but mainly because they display a range of many relevant biological effects, including: myotoxic, cytotoxic, edema-inducing, artificial membrane disrupting, anticoagulant, neuromuscular, platelet aggregation inhibiting, hypotensive, bactericidal, anti-HIV, anti-tumoural, anti-malarial and anti-parasitic. The primary structures of several PLA(2)s have been elucidated through direct amino acid sequencing or, inderectly, through the corresponding nucleotide sequencing. Two main subgroups were thus described: (i) Asp49 PLA(2)s, showing low (basic, highly myotoxic) to relatively high (acidic, less or non myotoxic) Ca++-dependent hydrolytic activity upon artificial substrates; (ii) Lys49 PLA(2)s (basic, highly myotoxic) , showing no detectable hydrolytic activity on artificial substrates. Several crystal structures of Lys49 PLAs from genus Bothrops have already been solved, revealing very similar fold patterns. Lack of catalytic activity of myotoxic Lys49-PLA(2)s, first related solely with the fact that Lys49 occupies the position of the calcium ion in the catalyticly active site of Asp49 PLA(2)s, is now also attributed to Lys122 which interacts with the carbonyl of Cys29 hyperpolarising the peptide bond between Cys29 and Gly30 and trapping the fatty acid product in the active site, thus interrupting the catalytic cycle. This hypothesis, supported for three recent structures, is also discussed here. All Asp49 myotoxins showed to be pharmacologically more potent when compared with the Lys49 variants, but phospholipid hydrolysis is not an indispensable condition for the myotoxic, cytotoxic, bactericidal, anti-HIV, anti-parasitic, liposome disrupting or edema-inducing activities. Recent studies on site directed mutagenesis of the recombinant Lys49 myotoxin from Bothrops jararacussu revealed the participation of important amino acid residues in the membrane damaging and myotoxic activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many plants are used in traditional medicine as active agents against various effects induced by snakebite. The methanolic extract from Cordia verbenacea (Cv) significantly inhibited paw edema induced by Bothrops jararacussu snake venom and by its main basic phospholipase A(2) homologs, namely bothropstoxins I and II (BthTXs). The active component was isolated by chromatography on Sephadex LH-20 and by RP-HPLC on a C18 column and identified as rosmarinic acid (Cv-RA). Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid [2-O-cafeoil-3-(3,4-di-hydroxy-phenyl)-R-lactic acid]. This is the first report of RA in the species C. verbenacea ('baleeira', 'whaler') and of its anti-inflammatory and antimyotoxic properties against snake venoms and isolated toxins. RA inhibited the edema and myotoxic activity induced by the basic PLA(2)s BthTX-I and BthTX-II. It was, however, less efficient to inhibit the PLA(2) activity of BthTX-II and, still less, the PLA(2) and edema-inducing activities of the acidic isoform BthA-1-PLA(2), from the same venom, showing therefore a higher inhibitory activity upon basic PLA(2)s. RA also inhibited most of the myotoxic and partially the edema-inducing effects of both basic PLA(2)s, thus reinforcing the idea of dissociation between the catalytic and pharmacological domains. The pure compound potentiated the ability of the commercial equine polyvalent antivenom in neutralizing lethal and myotoxic effects of the crude venom and of isolated PLA(2)s in experimental models. CD data presented here suggest that, after binding, no significant conformation changes occur either in the Cv-RA or in the target PLA(2). A possible model for the interaction of rosmarinic acid with Lys49-PLA(2) BthTX-I is proposed. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, a complete X-ray diffraction data set has been collected from a myotoxic Asp49-phospholipase A(2) (Asp49-PLA(2)) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) and a molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxin Asp49-PLA(2) PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA(2)s. In contrast, the oligomeric structure of BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA(2) from B. jararacussu). Thus, comparison between these structures should add insight into the catalytic and myotoxic activities of bothropic PLA(2)s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crotoxin B is a basic phospholipase A(2) found in the venom of Crotalus durissus terrificus and is one of the subunits that constitute crotoxin. This heterodimeric toxin, which is the main component of C. d. terrificus venom, is completed by an acidic, nontoxic and non-enzymatic component (crotoxin A) and is involved in important envenomation effects, such as neurological disorders, myotoxicity and renal failure. Although crotoxin was first crystallized in 1938, no crystal structure is currently available for crotoxin, crotoxin A or crotoxin B. In this work, the crystallization, X-ray diffraction data collection to 2.28 angstrom resolution and molecular-replacement solution of a novel tetrameric complex formed by two dimers of crotoxin B isoforms (CB1 and CB2) is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acidic (pI similar to 4.5) phospholipase A(2) (BthA-I-PLA(2)) was isolated from Bothrops jararacussu snake venom by ion-exchange chromatography on a CM-Sepharose column followed by reverse phase chromatography on an RP-HPLC C-18 column. It is an similar to13.7 kDa single chain Asp49 PLA(2) with approximately 122 amino acid residues, 7 disulfide bridges, and the following N-terminal sequence: 'SLWQFGKMINYVMJGESGVLQYLSYGCYCGLGGQGQPTDATDRCCFVHDCC(51). Crystals of this acidic protein diffracted beyond 2.0 Angstrom resolution. These crystals are monoclinic and have unit cell dimensions of a = 33.9, b = 63.8, c = 49.1 Angstrom, and beta = 104.0degrees. Although not myotoxic, cytotoxic, or lethal, the protein was catalytically 3-4 tithes more active than BthTX-II, a basic D49 myotoxic PLA(2) from the same venom and other Bothrops venoms. Although it showed no toxic activity, it was able to induce time-independent edema, this activity being inhibited by EDTA. In addition, BthA-I-PLA(2) caused a hypotensive response in the rat and inhibited platelet aggregation, Catalytic, antiplatelet and other activities were abolished by chemical modification with 4-bromophenacyl bromide, which is known to covalently bind to His48 of the catalytic site. Antibodies raised against crude B. jararacussu venom recognized this acidic PLA(2), while anti-Asp49-BthTX-II recognized it weakly and anti-Lys49-BthTX-I showed the least cross-reaction. These data confirm that myotoxicity does not necessarily correlate with catalytic activity in native PLA(2) homologues and that either of these two activities may exist alone. BthA-I-PLA(2), in addition to representing a relevant molecular model of catalytic activity, is also a promising hypotensive agent and platelet aggregation inhibitor for further studies. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of dimeric Lys49-phospholipase A2 myotoxin-II from Bothrops moojeni (MjTX-II) co-crystallized with stearic acid (C18H36O2) has been determined at a resolution of 1.8 angstrom. The electron density maps permitted the unambiguous inclusion of six stearic acid molecules in the refinement. Two stearic acid molecules could be located in the substrate-binding cleft of each monomer in positions, which favor the interaction of their carboxyl groups with active site residues. The way of binding of stearic acids to this Lys49-PLA(2)s is analogous to phospholipids and transition state analogues to catalytically active PLA(2)s. Two additional stearic acid molecules were located at the dimer interface region, defining a hitherto unidentified acyl-binding site on the protein surface. The strictly conserved Lys122 for Lys49-PLA(2)s may play a fundamental role for stabilization of legend-protein complex. The comparison of MjTX-II/satiric acid complex with other Lys-PLA(2)s structures whose putative fatty acids were located at their active site is also analysed. Molecular details of the stearic acid/protein interactions provide insights to binding in croup I/II PLA(2)s and to the possible interactions of Lys49-PLA(2)s with target membranes. (c) 2004 Elsevier SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipases A(2) (PLA(2)s) are commonly found in snake venoms from Viperidae, Hydrophidae and Elaphidae families and have been extensively studied due to their pharmacological and physiopathological effects in living organisms. This article reports a review on natural and artificial inhibitors of enzymatic, toxic and pharmacological effects induced by snake venom PLA(2)s. These inhibitors act on PLA(2)S through different mechanisms, most of them still not completely understood, including binding to specific domains, denaturation, modification of specific amino acid residues and others. Several substances have been evaluated regarding their effects against snake venoms and isolated toxins, including plant extracts and compounds from marine animals, mammals and snakes serum plasma, in addition to poly or monoclonal antibodies and several synthetic molecules. Research involving these inhibitors may be useful to understand the mechanism of action of PLA(2)s and their role in envenomations caused by snake bite. Furthermore, the biotechnological potential of PLA(2) inhibitors may provide therapeutic molecular models with antiophidian activity to supplement the conventional serum therapy against these multifunctional enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipases A(2) belong to the superfamily of proteins which hydrolyzes the sn-2 acyl groups of membrane phospholipids to release arachidonic acid and lysophospholipids. An acidic phospholipase A(2) isolated from Bothrops juraracussu snake venom presents a high catalytic, platelet aggregation inhibition and hypotensive activities. This protein was crystallized in two oligomeric states: monomeric and dimeric. The crystal structures were solved at 1.79 and 1.90 Angstrom resolution, respectively, for the two states. It was identified a Na+ ion at the center of Ca2+-binding site of the monomeric form. A novel dimeric conformation with the active sites exposed to the solvent was observed. Conformational states of the molecule may be due to the physicochemical conditions used in the crystallization experiments. We suggest dimeric state is one found in vivo. (C) 2004 Elsevier B.V. All rights reserved.