22 resultados para Persistent homology
Resumo:
Experimental autoimmune encephalomyelitis (EAE) is an artificially induced demyelination of the central nervous system (CNS) that resembles multiple sclerosis in its clinical, histopathological, and immunological features. Activated Th1 and Th17 cells are thought to be the main immunological players during EAE development. This study was designed to evaluate peripheral and local contribution of IL-17 to acute and chronic EAE stages. C57BL/6 mice were immunized with MOG plus complete Freund's adjuvant followed by pertussis toxin. Mice presented an initial acute phase characterized by accentuated weight loss and high clinical score, followed by a partial recovery when the animals reached normal body weight and smaller clinical scores. Spleen cells stimulated with MOG produced significantly higher levels of IFN-γ during the acute period whereas similar IL-17 levels were produced during both disease stages. CNS-infiltrating cells stimulated with MOG produced similar amounts of IFN-γ but, IL-17 was produced only at the acute phase of EAE. The percentage of Foxp3+ Treg cells, at the spleen and CNS, was elevated during both phases. The degree of inflammation was similar at both disease stages. Partial clinical recovery observed during chronic EAE was associated with no IL-17 production and presence of Foxp3+ Treg cells in the CNS. © 2013 Sofia Fernanda Gonçalves Zorzella-Pezavento et al.
Resumo:
Mammalian natriuretic peptides (NPs) have been extensively investigated for use as therapeutic agents in the treatment of cardiovascular diseases. Here, we describe the isolation, sequencing and tridimensional homology modeling of the first C-type natriuretic peptide isolated from scorpion venom. In addition, its effects on the renal function of rats and on the mRNA expression of natriuretic peptide receptors in the kidneys are delineated. Fractionation of Tityusserrulatus venom using chromatographic techniques yielded a peptide with a molecular mass of 2190.64Da, which exhibited the pattern of disulfide bridges that is characteristic of a C-type NP (TsNP, T. serrulatus Natriuretic Peptide). In the isolated perfused rat kidney assay, treatment with two concentrations of TsNP (0.03 and 0.1μg/mL) increased the perfusion pressure, glomerular filtration rate and urinary flow. After 60min of treatment at both concentrations, the percentages of sodium, potassium and chloride transport were decreased, and the urinary cGMP concentration was elevated. Natriuretic peptide receptor-A (NPR-A) mRNA expression was down regulated in the kidneys treated with both concentrations of TsNP, whereas NPR-B, NPR-C and CG-C mRNAs were up regulated at the 0.1μg/mL concentration. In conclusion, this work describes the isolation and modeling of the first natriuretic peptide isolated from scorpion venom. In addition, examinations of the renal actions of TsNP indicate that its effects may be related to the activation of NPR-B, NPR-C and GC-C. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A number of speech disorders including stuttering have been shown to have important genetic contributions, as indicated by high heritability estimates from twin and other studies. We studied the potential contribution to stuttering from variants in the FOXP2 gene, which have previously been associated with developmental verbal dyspraxia, and from variants in the CNTNAP2 gene, which have been associated with specific language impairment (SLI). DNA sequence analysis of these two genes in a group of 602 unrelated cases, all with familial persistent developmental stuttering, revealed no excess of potentially deleterious coding sequence variants in the cases compared to a matched group of 487 well characterized neurologically normal controls. This was compared to the distribution of variants in the GNPTAB, GNPTG, and NAGPA genes which have previously been associated with persistent stuttering. Using an expanded subject data set, we again found that NAGPA showed significantly different mutation frequencies in North Americans of European descent (p = 0.0091) and a significant difference existed in the mutation frequency of GNPTAB in Brazilians (p = 0.00050). No significant differences in mutation frequency in the FOXP2 and CNTNAP2 genes were observed between cases and controls. To examine the pattern of expression of these five genes in the human brain, real time quantitative reverse transcription PCR was performed on RNA purified from 27 different human brain regions. The expression patterns of FOXP2 and CNTNAP2 were generally different from those of GNPTAB, GNPTG and NAPGA in terms of relatively lower expression in the cerebellum. This study provides an improved estimate of the contribution of mutations in GNPTAB, GNPTG and NAGPA to persistent stuttering, and suggests that variants in FOXP2 and CNTNAP2 are not involved in the genesis of familial persistent stuttering. This, together with the different brain expression patterns of GNPTAB, GNPTG, and NAGPA compared to that of FOXP2 and CNTNAP2, suggests that the genetic neuropathological origins of stuttering differ from those of verbal dyspraxia and SLI. Published by Elsevier Inc.