19 resultados para Particulate boards


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared the effect of physicochemical surface conditioning methods on the adhesion of bis-GMA-based resin cement to particulate filler composite (PFC) used for indirect dental restorations. PFC blocks (N (block)=54, n (block)=9 per group) were polymerized and randomly subjected to one of the following surface conditioning methods: a) No conditioning (Control-C), b) Hydrofluoric acid (HF)etching for 60s (AE60), c) HF for 90s (AE90), d) HF for 120s (AE120), e) HF for 180s (AE180), and f) air-abrasion with 30 mu m silica-coated alumina particles (AB). The conditioned surfaces were silanized with an MPS silane, and an adhesive resin was applied. Resin composite blocks were bonded to PFC using resin cement and photo-polymerized. PFC-cement-resin composite blocks were cut under coolant water to obtain bar specimens (1mmx0.8mm). Microtensile bond strength test (mu TBS)was performed in a universal testing machine (1mm/min). After debonding, failure modes were classified using stereomicroscopy. Surface characterization was performed on a set of separate specimen surfaces using Scanning Electron Microscopy (SEM), X-Ray Dispersive Spectroscopy (XDS), X-Ray Photoelectron Spectroscopy (XPS), and Fourier Transform-Raman Spectroscopy (FT-RS). Mean mu TBS (MPa) of C (35.6 +/- 4.9) was significantly lower than those of other groups (40.2 +/- 5.6-47.4 +/- 6.1) (p<0.05). The highest mu TBS was obtained in Group AB (47.4 +/- 6.1). Prolonged duration of HF etching increased the results (AE180: 41.9 +/- 7), but was not significantly different than that of AB (p>0.05). Failure types were predominantly cohesive in PFC (34 out of 54) followed by cohesive failure in the cement (16 out of 54). Degree of conversion (DC) of the PFC was 63 +/- 10%. SEM analysis showed increased irregularities on PFC surfaces with the increased etching time. Chemical surface analyses with XPS and FT-RS indicated 11-70% silane on the PFC surfaces that contributed to improved bond strength compared to Group C that presented 5% silane, which seemed to be a threshold. Group AB displayed 83% SiO2 and 17% silane on the surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the physicochemical characteristics of calcium phosphate based bioactive ceramics of different compositions and blends presenting similar micro/nanoporosity and micrometer scale surface texture were characterized and evaluated in an in vivo model. Prior to the animal experiment, the porosity, surface area, particle size distribution, phase quantification, and dissolution of the materials tested were evaluated. The bone regenerative properties of the materials were evaluated using a rabbit calvaria model. After 2, 4, and 8 weeks, the animals were sacrificed and all samples were subjected to histologic observation and histomorphometric analysis. The material characterization showed that all materials tested presented variation in particle size, porosity and composition with different degrees of HA/TCP/lower stoichiometry phase ratios. Histologically, the calvarial defects presented temporal bone filling suggesting that all material groups were biocompatible and osteoconductive. Among the different materials tested, there were significant differences found in the amount of bone formation as a function of time. At 8 weeks, the micro/nanoporous material presenting similar to 55,TCP:45%,HA composition ratio presented higher amounts of new bone regeneration relative to other blends and a decrease in the amount of soft tissue infiltration. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis. Environ. Mol. Mutagen., 2015. © 2015 Wiley Periodicals, Inc.