19 resultados para PORE FORMATION
Resumo:
In this work, the effect of the substrate microstructure on the formation of SnO2 membranes and of the sintering conditions on their porosity have been analysed. Samples have been prepared by colloidal suspensions cast on alumina or kaolin substrates. Supported membranes have been characterized by Hg porosimetry, MEV, XRD and N-2 adsorption-desorption isotherms. The results show that the narrower pore size distribution of alumina substrate allowed to prepare membranes more homogeneous and free of cracks than that supported on kaolin. The crystallite and pore sizes of the membranes could be controlled by adjusting the temperature of sintering, allowing materials with adequate microstructure with application for ultrafiltration process.
Resumo:
The effect of acetylacetone (acac) complexing ligand on the formation and growth of tin oxide-based nanoparticles during thermohydrolysis at 70 degreesC of a tin precursor SnCl4-n(acac)(n) (0 less than or equal to n less than or equal to 2) solution was analyzed by in situ small-angle X-ray scattering. A. transparent and stable sol was obtained after 2 h of thermohydrolysis at 70 degreesC, allowing the quantitative determination of the particle volume distribution function and its variation with the reaction time. The number of colloidal particles for equivalent thermohydrolysis temperature and time decreases as the [acac]/[Sn] ratio in initial solution increases from 0.5 to 6. Instead, the amount of soluble species remaining in solution increases for increasing [acac]/[Sn] ratio within the same range. This indicates that increasing amounts of Sn-acetylacetone complexes partially prevent the hydrolysis and consequent formation of colloidal particles. The N-2 adsorption isotherm characterization of freeze-dried powders demonstrates that the average pore size is approximately equal to the average size (approximate to9 Angstrom) of the colloidal primary particles in the sol, and that the porosity and surface area (approximate to200 m(2) g(-1)) are independent of the acac content in the initial solution.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper discusses on effect of molybdenum on the Ti6Si2B formation in mechanically alloyed and hot-pressed Ti-xMo-22Si-11B (x= 2, 5, 7 and 10 at%) alloys. High-energy ball milling and hot pressing were utilized to produce homogeneous and dense materials, which were characterized by scanning electron microscopy, X-ray diffraction, electron dispersive spectrometry, and Vickers hardness. The excessive agglomeration during milling was more pronounced in Moricher powders, which was minimized with the formation of brittle phases. Hot pressing of mechanically alloyed Ti-xMo-22Si-11B powders produced dense samples containing lower pore amounts than 1%. Ti6Si2B was formed in microstructure of the hot-pressed Ti-2Mo-22Si-11B alloy only. In Mo-richer quaternary alloys, the Ti3Si and Ti5Si3 phases were preferentially formed during hot pressing. Oppositely to the ternary phase, the Ti3Si phase dissolved a significant Mo amount. Vickers hardness values were reduced in hot-pressed Ti-xMo-22Si-11B alloys containing larger Mo amounts, which were dissolved preferentially in Ti solid solution. © (2012) Trans Tech Publications, Switzerland.