45 resultados para PHOSPHATIDYLGLYCEROL BILAYERS
Resumo:
Organic-inorganic hybrid materials based on the assembly between inorganic 2D host structure and polymer have received considerable attention in the last few years. This emerging class of materials presents several applications according to their structural and functional properties. Particularly, among others, layered double hydroxides (LDHs) provide the opportunity of preparing new organically modified 2D nanocomposites. Pyrrole carboxylic acid derivatives, namely 4-(lH-pyrrol-1-yl)benzoate, 3-(pyrrol-i-yl)-propanoate,7-(pyrrol-1-yl)-heptanoate, and aniline carboxylic acid derivative, namely 3-aminobenzoic acid, have been intercalated in LDHs of intralamellar composition Zn2Al(OH)(6). The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by powder X-ray diffraction patterns (PXRD), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and electron spin resonance (ESR). The basal spacing found by the PXRD technique gives evidence of the formation of bilayers of the intercalated anions. ESR spectra present a typical signal with a superhyperfine structure with 6 + 1 lines (g = 2.005 +/- 0.0004), which is assigned to the interaction between a carboxylate radical from the guest molecules and a nearby aluminium nucleus (I = 5/2) from the host structure. Additionally, the ESR data suggest that the monomers are connected to each other in limited number after thermal treatment. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
High-curvature and stabilized vesicles of dioctadecyldimethylammonium bromide (DODABr) can be formed spontaneously in aqueous electrolytic solution. It is shown by cryo-transmission electron microscopy that 5.0 mM DODABr molecules associate in water at a temperature above its gel-to-liquid-crystalline phase transition temperature (T(m)approximate to45 degreesC) in a variety of complex bilayer structures. However, in the presence of NaCl the preferred structures formed are unilamellar and bilamellar vesicles with high curvature and the dispersion is polydisperse in size and geometry, but the main vesicle population contains spherical, flattened and smoothed structures. It is, however, less polydisperse than the corresponding salt-free dispersion, and the size polydispersity and the vesicle curvature radius tend to decrease with NaCl concentration. Long cylindrical bilamellar vesicles, with a very thin water layer separating the bilayers are also formed in the presence of 10 mM NaCl. The effect of the ionic strength on T-m, obtained by differential scanning calorimetry, is shown to depend on the nature of the counterion: Br- decreases, whereas Cl- increases Tm of DODABr, indicating different affinity of these counterions for the vesicle surfaces.
Resumo:
The effect of sonication on fluorescence probe solubilization in cationic vesicles of dioctadecyldimethylammonium bromide (DODAB) was investigated by steady-state fluorescence of pyrene (Py), trans-diphenylpolyenes-diphenylbutadiene (DPB), diphenylhexatriene (DPH), and their corresponding 4,4'-dialkyl derivatives 4B4A and 4H4A fluorescence probes. The data indicate that sonication affects the bilayer polarity, the melting temperature (T (m)), and the cooperativity of the melting process due to changes in vesicle morphology. The effect of temperature on the fluorescence intensity and yielding I broken vertical bar(f) and anisotropy < r > shows that the ionizable probes 4B4A and 4H4A are solubilized close to the vesicle interfaces, whereas the non-ionizable DPH and DPB are deeper in the bilayers. Py solubilization indicates that sonicated vesicles exhibit less densely packed bilayers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide's primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
A simple model of electron transfer is adapted to explain fluorescence quenching in self-assembled films of poly( p-phenylene vinylene) (PPV) alternating with poly(thiophene acetic acid) (PTAA). Quenching is caused by a photo-induced electron transfer between the excited PPV (donor, D) and the PTAA (acceptor, A). The electron-transfer process can be mediated by insertion of electronically inert spacing bilayers between the D and A layers, As the number of bilayers is increased, the fluorescence is gradually recovered which is explained theoretically by assuming that the electron-transfer rate can be described as k = Z exp(- beta r) where r is the distance between D and A. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The two-dimensional hybrid organic-inorganic materials Zn-2-Cr and Zn-2-Al-LDHs (Layered Double Hydroxides) containing 4-(1H-pyrrol-1yl)benzoate anions as the interlayer anions were synthesized by the co-precipitation method at constant pH followed by subsequent hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, ESR, TGA, and TEM. The basal spacing found by the X-ray diffraction technique is coincident with the formation of bilayers of the intercalated anions. Solid-state C-13 NMR and ESR data strongly suggest the partial in situ polymerization of the 4-(1H-pyrrol-1yl)benzoate anions during coprecipitation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report the synthesis and characterization of organic-inorganic hybrid materials: Zn-2-Al-LDHs (layered double hydroxides) containing 3-(1H-pyrrol-1-yl)-propanoate and 7-(1H-pyrrol-l-yl)-heptanoate as the interlayer anions. The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, TGA, and ESR. The basal spacing found by PXRD technique is coincident with the formation of bilayers of the intercalated anions. The solid state C-13 NMR showed that the interlayered anions remain identical after intercalation. ESR data suggest that the monomers connect each other in a limited number of guests when a thermal treatment is applied. The inorganic LDH sheets delay the temperature of degradation of the monomers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Thioglycolic acid-capped Use quantum dots (QDs) were assembled on glass substrates with two distinct polyelectrolytes, viz poly(allylamine hydrochloride) (PAH) and poly(amidoamine) (PAMAM), generation 4 dendrimer, via the layer-by-layer (LbL) technique. Films containing up to 30 polyelectrolyte/QD bilayers were prepared. The growth of the multilayers was monitored with UV-vis spectroscopy, which showed an almost linear increase in the absorbance of the 2.8 nm QDs at 535 nm with the number of deposited bilayers. AFM measurements estimated a film thickness of 3 nm per bilayer for the PAH/Cdse films. The adsorption process and the optical properties of the PAMAM/CdSe LbL films were further analyzed layer-by-layer using surface plasmon resonance (SPR), from which a thickness of 3.2 nm was found for a PAMAM/CdSe bilayer. Photoluminescence measurements revealed higher photooxidation of the quantum dots in PAH/CdSe than in PAMAM/CdSe films. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Dioctadecyldimethylammonium bromide (DODAB) is a double chain vesicle-forming cationic surfactant, whereas octa-ethyleneglycol mono-n-dodecyl ether (C12E8) is a single chain micelle-forming nonionic surfactant. At room temperature (ca. 22 degrees C) C12E8 molecules self-assemble in water as micelles while DODAB is insoluble. A mixture of DODAB and C12E8, however, can be soluble in water at room temperature depending on the relative amount of the compounds. We report the formation of small unilamellar vesicles (SUVs) by dialyzing at room temperature a mixture of 1.0 mM DODAB with 10 mM C12E8 in water. Extended bilayers are formed as well in equilibrium with vesicles. Such structures are viewed by a cryogenic transmission electron microscopy (cryo-TEM) image. (c) 2006 Elsevier B.V. All rights reserved.