42 resultados para PHONON


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-phase perovskite structure BaZrxTi1-xO3 (BZT) (0.05less than or equal toxless than or equal to0.25) thin films were deposited on Pt-Ti-SiO2-Si substrates by the spin-coating technique. The structural modifications in the thin films were studied using x-ray diffraction and micro-Raman scattering techniques. Lattice parameters calculated from x-ray data indicate an increase in lattice (a axis) with the increasing content of zirconium in these films. Such Zr substitution also result in variations of the phonon mode wave numbers, especially those of lower wave numbers, for BaZrxTi1-xO3 thin films, corroborate to the structural change caused by the zirconium doping. on the other hand, Raman modes persist above structural phase transition, although all optical modes should be Raman inactive in the cubic phase. The origin of these modes must be interpreted as a function of a local breakdown of the cubic symmetry, which could be a result of some kind of disorder. The BZT thin films exhibited a satisfactory dielectric constant close to 181-138, and low dielectric loss tan delta<0.03 at the frequency of 1 kHz. The leakage current density of the BZT thin films was studied at elevated temperatures and the data obey the Schottky emission model. Through this analysis the Schottky barrier height values 0.68, 1.39, and 1.24 eV were estimated to the BZT5, BZT15, and BZT25 thin films, respectively. (C) 2004 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anelastic relaxation (elastic energy loss and Young modulus) of nearly stoichiometric La2CuO4+delta with LTO structure was measured. Extraordinarily intense effects are present below room temperature in the elastic dynamic susceptibility, indicating relaxational dynamics of a relevant fraction of the lattice. The involved degrees of freedom are identified as rotations of the CuO6 octahedra. Two distinct processes are found at frequencies around 1 kKz: one is observed around 150 K and is characterized by a mean activation energy of 2800 K; the second one occurs below 30 K and is governed by atomic tunnelling. Two explanations are proposed for the faster process: i) formation of fluctuating LTT domains on a scale of few atomic cells; ii) the LTO phase is a dynamical Jahn-Teller phase with all the octahedra tunneling between two LTT-like tilts. In both cases there would be important implications regarding the mechanisms giving rise to charge nanophase separation and strong electron-phonon coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field-dependent conductivity at low electric fields was observed from low to room temperature in pressed pellets of doped poly(3-methylthiophene). The room temperature data showed good agreement with Bardeen's theory of charge-density wave depinning and the values of the parameters obtained are consistent with a strong electron-phonon interaction as expected for quasi-one dimensional systems. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pressed pellet of CIO (-)(4) poly (3-methylthiophene) (P3MT) was heated for two hours at 85 degrees C and suddenly dropped in liquid nitrogen. A change was observed around 220 K in the Electron Spin Resonance (ESR) spectra when the sample was slowly cooled from room temperature. ESR line asymmetry parameter (A/B) showed two spatially separated phases. One was identified as a small metallic-like phase. The other phase, the larger one, makes a transition to a semiconducting Charge-Density Wave (CDW) state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seselin, C14H12O3, is a coumarin which crystallizes in a monoclinic structure P2(1)/b(C-2h(5)) with four molecules per unit cell. In a Fourier-transform Raman spectroscopic study performed at room temperature, several normal modes were observed. Vibrational wavenumber and wave vector calculations using density functional theory were compared with experiment, which allowed the assignment of a number of normal modes of the crystal. Temperature-dependent Raman spectra were recorded between 10 and 300 K. No anomalies were observed in the phonon spectra, indicating that the monoclinic structure remains stable. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The original model of Das et al. is modified in extending the electron-ion interaction on a three-body forces and including the crystal equilibrium condition to reduce one independent parameter. We studied the phonon dispersion relations along the three principal symmetry directions i.e. [xi, 0, 0], [xi, xi, 0] and [xi, xi, xi] and theta-T curves of alkali metals, Na, K, Rb, Cs and Li. There is close agreement between the computed results and the experimental observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectric and Raman scattering experiments were performed on polycrystalline Pb1-xCaxTiO3 thin films (x=0.10, 0.20, 0.30, and 0.40) as a function of temperature. The results showed no shift in the dielectric constant (K) maxima, a broadening with frequency, and a linear dependence of the transition temperature on increasing Ca2+ content. on the other hand, a diffuse-type phase transition was observed upon transforming from the cubic paraelectric to the tetragonal ferroelectric phase in all thin films. The temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the local cubic symmetry due to chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands in some temperature interval above the FE-PE phase transition temperature suggested a diffuse-type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a modified chalcogenide glass was studied by X-ray powder diffraction, differential thermal analysis, infrared and Raman scattering spectroscopies. The study of this new matrix opens new perspectives to fabricate Pr3+-doped fibers to operate as an optical amplifier in the 1.3 mum telecommunications window. The Pr3+-doped 70Ga(2)S(3)-30La(2)S(3) glass was modified through the substitution of La2S3 by La2O3, which improves the thermal stability of these glasses without any modification of phonon energy. The possibility to pull a fiber from this glass system without any devitrification is easily achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The refractive index and the temperature coefficient of the optical path length change of tellurite (80TeO(2):20Li(2)O) and chalcogenide glasses (72.5Ga(2)S(3):27.5La(2)O(3)) were determined as a function of temperature (up to 150 degrees C) and wavelength (in the range between 454 and 632.8 nm). The tellurite glass exhibits the usual refractive index dispersion in the wavelength range analyzed, while anomalous refractive index dispersion was observed for the chalcogenide glass between 454 and 530 nm. The dispersion parameters were determined by means of the single-effective oscillator model. In addition, a strong dependence of the temperature coefficient of the optical path length on the photon energy and temperature was found for the chalcogenide glass. The latter was correlated to the shift of the optical band gap (or electronic edge) with temperature, which was interpreted by the electron-phonon interaction model. (C) 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pb1-xCaxTiO3 (0.10less than or equal toxless than or equal to0.40) thin films on Pt/Ti/SiO2/Si(100) substrates were prepared by the soft solution process and their characteristics were investigated as a function of the calcium content (x). The structural modifications in the films were studied using x-ray diffraction and micro-Raman scattering techniques. Lattice parameters calculated from x-ray data indicate a decrease in lattice tetragonality with the increasing content of calcium in these films. Raman spectra exhibited characteristic features of pure PbTiO3 thin films. Variations in the phonon mode wave numbers, especially those of lower wave numbers, of Pb1-xCaxTiO3 thin films as a function of the composition corroborate the decrease in tetragonality caused by the calcium doping. As the Ca content (x) increases from 0.10 to 0.40, the dielectric constant at room temperature abnormally increased at 1 kHz from 148 to 430. Also calcium substitution decreased the remanent polarization and coercive field from 28.0 to 5.3 muC/cm(2) and 124 to 58 kV/cm, respectively. These properties can be explained in terms of variations of phase transition (ferroelectric-paraelectric), resulting from the substitution the lead site of PbTiO(3)for the nonvolatile calcium. (C) 2002 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Far-infrared transitions in polar semiconductors are known to be affected by the presence of shallow donor impurities, external magnetic fields and the electron-LO-phonon interaction. We calculate the magnetodonor states in indium phosphide by a diagonalization procedure, and introduce the electron-phonon interaction by the Frohlich term. The main effects of this perturbation are calculated by a multi-level version of the Wigner-Brillouin theory. We determine the transition energies, from the ground state to excited states, and find good qualitative agreement with recently reported absorption-spectroscopy measurements in the 100-800 cm(-1) range, with applied magnetic fields up to 30 T. Our calculations suggest that experimental peak splittings in the 400-450 cm(-1) range are due to the electron-phonon interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectric and Raman scattering experiments were performed on polycrystalline Pb(1-x)Ba(x)TiO(3) thin films (x=0.40 and 0.60) as a function of temperature. The dielectric study on single phase compositions revealed that a diffuse-type phase transition occurred upon transformation of the cubic paraelectric to the tetragonal ferroelectric phase in all thin films, which showed a broadening of the dielectric peak. Diffusivity was found to increase with increasing barium contents in the composition range under study. In addition, the temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted as a breakdown of the local cubic symmetry by chemical disorder. The lack of a well-defined transition temperature and the presence of broadbands in some temperature intervals above the paraferroelectric phase transition temperature suggest a diffuse-type phase transition. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the electronic structure associated to a disordered distribution of bipolarons in polythiophene. The polymer chain is modelled by a tight-binding Hamiltonian with explicit treatment of electron-phonon coupling and the elastic energy of the sigma framework. The model also includes the electrostatic interaction due to the counterions. The density of states of the disordered system is obtained by the use of the Negative Factor Counting technique. Our results show that ion-induced conformational disorder can account for the closure of the gap and that the states around the Fermi level are extended. © 1993.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dispersion relations along the principal symmetry directions in BCC lithium-sodium alloys are calculated using second-order perturbation theory. The local modified Hoshino-Youngmodel potential was used for the lithium and the local Harrison model potential for sodium. The phonon density of states, the root mean square displacements and (Θ-T) curves are also calculated. In the absence of experimental data, just the theoretical predictions are presented here.