20 resultados para Outputless Finite State Automaton
Resumo:
As it follows from the classical analysis, the typical final state of a dark energy universe where a dominant energy condition is violated is a finite-time, sudden future singularity (a big rip). For a number of dark energy universes (including scalar phantom and effective phantom theories as well as specific quintessence models) we demonstrate that quantum effects play the dominant role near a big rip, driving the universe out of a future singularity (or, at least, moderating it). As a consequence, the entropy bounds with quantum corrections become well defined near a big rip. Similarly, black hole mass loss due to phantom accretion is not so dramatic as was expected: masses do not vanish to zero due to the transient character of the phantom evolution stage. Some examples of cosmological evolution for a negative, time-dependent equation of state are also considered with the same conclusions. The application of negative entropy (or negative temperature) occurrence in the phantom thermodynamics is briefly discussed.
Alternate treatments of jacobian singularities in polar coordinates within finite-difference schemes
Resumo:
Jacobian singularities of differential operators in curvilinear coordinates occur when the Jacobian determinant of the curvilinear-to-Cartesian mapping vanishes, thus leading to unbounded coefficients in partial differential equations. Within a finite-difference scheme, we treat the singularity at the pole of polar coordinates by setting up complementary equations. Such equations are obtained by either integral or smoothness conditions. They are assessed by application to analytically solvable steady-state heat-conduction problems.
Resumo:
The scale invariance manifested by the weakly-bound Efimov states implies that all the Efimov spectrum can be merged in a single scaling function. By considering this scaling function, the ratio between two consecutive energy levels, E3 (N+1) and E3 (N), can be obtained from a two-body low-energy observable (usually the scattering length a), given in units of the three-body energy level N. The zero-ranged scaling function is improved by incorporating finite range corrections in first order of r0/a (r0 is the potential effective range). The critical condition for three-identical bosons in s-wave, when the excited E3 (N+1) state disappears in the 2 + 1 threshold, is given by √E2/E3 (N) ≈ 0.38+0.12(r0/a). © 2012 Springer-Verlag.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the q=2 state (Ising) and the q=3 state Potts model defined on phi(3) Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the q=3 state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations.