35 resultados para Outer membrane proteins
Resumo:
Claudins (CLDNs) are a family of membrane proteins important for permeability of tight junctions. They have also been implicated in carcinogenesis and tumor progression. We analyzed patterns of distribution and intensity of expression of CLDNs 1, 3, 4, and 7 in mucoepidermoid carcinoma (MEC) of salivary gland in 39 patients. Correlations between the expression of CLDNs, tumor grade, and survival were explored. In immunohistochemical analysis, high expression of CLDN 1 was seen in low-grade MEC, and it appeared to be a suitable auxiliary marker of good prognosis. It classified MEC similarly to histological grading in 89.7% of cases (p=0.001). High CLDN 3 expression was seen in intermediate-and high-grade MEC, while it was low in low-grade MEC. CLDN 3 intensity correctly categorized tumors into grades in 71.8% of cases (p=0.017). However, in multivariate analysis CLDN 1 and CLDN 3 did not achieve significance over tumor grade in predicting patient behavior. We conclude that analysis of staining intensities of CLDN 1 and 3 is useful as an auxiliary diagnostic and prognostic tool in patients with salivary gland MEC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Three methods of extraction of lipopolysaccharide (LPS) were compared-the conventional hot phenol-water method with 40% phenol, a modified form of this method using 10% phenol, and the hot saline method. Good recovery of LPS was achieved by each of the three methods, with the LPS found in the aqueous phase with the two phenol-based procedures. The application of SDS-PAGE to the LPS extracts, followed by silver staining, showed similar banding with all three methods of extraction. When the hot saline extraction LPS fraction from eight strains of Bradyrhizobium spp. and eight strains of Bradyrhizobium japonicum was compared with SDS-PAGE, characteristic profiles were achieved. Serological analysis of eight strains of Bradyrhizobium spp., using antisera prepared against whole cells in agglutination reactions, showed extensive sharing of antigens. When antisera was prepared using outer membrane LPS, extracted by the hot saline method, the amount of cross-reaction was reduced greatly. The results indicated that LPS provide an efficient means of obtaining monospecific antisera to be used for serological identification of strains of Bradyrhizobium spp. and that the hot saline extraction method is recommended for a fast, simple and efficient way to obtain LPS and characterize this bacterium.
Resumo:
The expression of uroplakins, the tissue-specific and differentiation- dependent membrane proteins of the urothelium, was analyzed immunohistochemically in N butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-treated rats and mice during bladder carcinogenesis. Male Fischer 344 rats were treated with 0.05% BBN in the drinking water for 10 wk and were cuthanatized at week 20 of the experiment. BBN was administered to male B6D2F1 mice; it was either provided at a rate of 0.05% in the drinking water (for 26 wk) or 5 mg BBN was administered by intragastric gavage twice weekly for 10 wk, followed by 20 wk without treatment. In rats, BBN-induced, noninvasive, low grade, papillary, transitional cell carcinoma (TCC) showed decreased uroplakin-staining of cells lining the lumen but showed increased expression in some nonluminal cells. In mice, nonpapillary, high-grade dysplasia, carcinoma in situ, and invasive carcinoma were induced. There was a marked decrease in the number of uroplakin-positive cells lining the lumen and in nonluminal cells. This occurred in normal-appearing urothelium in BBN-treated mice and in dysplasic urothelium, in carcinoma in situ, and in invasive TCC. The percentage of uroplakin-positive nonluminal cells was higher in control mice than in rats, but it was lower in the mouse than in the rat after BBN treatment. Uroplakin expression was disorderly and focal in BBN-treated urothelium in both species. These results indicate that BBN treatment changed the expression of uroplakins during bladder carcinogenesis, with differences in rats and mice being related to degree of tumor differentiation.
Resumo:
The N-linked glycosylation of secretory and membrane proteins is the most complex posttranslational modification known to occur in eukaryotic cells. It has been shown to play critical roles in modulating protein function. Although this important biological process has been extensively studied in mammals, much less is known about this biosynthetic pathway in plants. The enzymes involved in plant N-glycan biosynthesis and processing are still not well defined and the mechanism of their genetic regulation is almost completely unknown. In this paper we describe our first attempt to understand the N-linked glycosylation mechanism in a plant species by using the data generated by the Sugarcane Expressed Sequence Tag (SUCEST) project. The SUCEST database was mined for sugarcane gene products potentially involved in the N-glycosylation pathway. This approach has led to the identification and functional assignment of 90 expressed sequence tag (EST) clusters sharing significant sequence similarity with the enzymes involved in N-glycan biosynthesis and processing. The ESTs identified were also analyzed to establish their relative abundance.
Resumo:
We describe affected individuals in three generations of a family and another sporadic case, all Brazilian patients, with a combination of signs that diagnose the BCD syndrome. In addition to the cardinal signs, the sporadic case has hypothyroidism and imperforate anus, which was observed previously in one patient. The broadened phenotype and the possibility of involvement of p63 and IRF6 genes in this condition are discussed. © 2003 Wiley-Liss, Inc.
Resumo:
The simultaneous existence of alternative oxidases and uncoupling proteins in plants has raised the question as to why plants need two energy-dissipating systems with apparently similar physiological functions. A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively. In total, six uncoupling protein genes, AtPUMP1-6, were recognized within the Arabidopsis genome and five (SsPUMP1-5) in a sugarcane EST database. The recombinant AtPUMP5 protein displayed similar biochemical properties as AtPUMP1. Sugarcane possessed four Arabidopsis AOx1-type orthologues (SsAOx1a-1d); no sugarcane orthologue corresponding to Arabidopsis AOx2-type genes was identified. Phylogenetic and expression analyses suggested that AtAOx1d does not belong to the AOx1-type family but forms a new (AOx3-type) family. Tissue-enriched expression profiling revealed that uncoupling protein genes were expressed more ubiquitously than the alternative oxidase genes. Distinct expression patterns among gene family members were observed between monocots and dicots and during chilling stress. These findings suggest that the members of each energy-dissipating system are subject to different cell or tissue/organ transcriptional regulation. As a result, plants may respond more flexibly to adverse biotic and abiotic conditions, in which oxidative stress is involved. © The Author [2006]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.
Resumo:
Uncoupling proteins (UCPs) are specialized mitochondrial transporter proteins that uncouple respiration from ATP synthesis. In this study, cDNA encoding maize uncoupling protein (ZmPUMP) was expressed in Escherichia coli and recombinant ZmPUMP reconstituted in liposomes. ZmPUMP activity was associated with a linoleic acid (LA)-mediated H+ efflux with Km of 56.36 ± 0.27 μM and Vmax of 66.9 μmol H+ min-1 (mg prot)-1. LA-mediated H+ fluxes were sensitive to ATP inhibition with Ki of 2.61 ± 0.36 mM (at pH 7.2), a value similar to those for dicot UCPs. ZmPUMP was also used to investigate the importance of a histidine pair present in the second matrix loop of mammalian UCP1 and absent in plant UCPs. ZmPUMP with introduced His pair (Lys155His and Ala157His) displayed a 1.55-fold increase in LA-affinity while its activity remained unchanged. Our data indicate conserved properties of plant UCPs and suggest an enhancing but not essential role of the histidine pair in proton transport mechanism. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Indirect ELISA and IFAT have been reported to be more sensitive and specific than agglutination tests. However, MAT is cheaper, easier than the others and does not need special equipment. The purpose of this study was to compare an enzyme linked immunosorbent assay using crude rhoptries of Toxoplasma gondii as coating wells (r-ELISA) with indirect fluorescence antibody test (IFAT) and modified agglutination test (MAT) to detect anti-T. gondii antibodies in sera of experimentally infected pigs. Ten mixed breed pigs between 6.5 and 7.5 weeks old were used. All pigs were negative for the presence of T. gondii antibodies by IFAT (titre < 16), r-ELISA (OD < 0.295) and MAT (titre < 16). Animals received 7 × 107 viable tachyzoites of the RH strain by intramuscular (IM) route at day 0. Serum samples were collected at days -6, 0, 7, 14, 21, 28, 35, 42, 50, and 57. IFAT detected anti-T. gondii antibodies earlier than r-ELISA and MAT. The average of antibody levels was higher at day 35 in IFAT (Log10 = 2.9) and in MAT (Log10 = 3.5), and at day 42 in r-ELISA (OD = 0.797). The antibody levels remained high through the 57th day after inoculation in MAT, and there was a decrease tendency in r-ELISA and IFAT. IFAT was used as gold standard and r-ELISA demonstrated a higher prevalence (73.3%), sensitivity (94.3%), negative predictive value (83.3%), and accuracy (95.6%) than MAT. Kappa agreements among tests were calculated, and the best results were shown by r-ELISA × IFAT (κ = 0.88, p < 0.001). Cross-reaction with Sarcocystis miescheriana was investigated in r-ELISA and OD mean was 0.163 ± 0.035 (n = 65). Additionally, none of the animals inoculated with Sarcocystis reacted positively in r-ELISA. Our results indicate that r-ELISA could be a good method for serological detection of T. gondii infection in pigs. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Hereditary hemochromatosis is a disorder of iron metabolism characterized by increased iron intake and progressive storage and is related to mutations in the HFE gene. Interactions between thalassemia and hemochromatosis may further increase iron overload. The ethnic background of the Brazilian population is heterogeneous and studies analyzing the simultaneous presence of HFE and thalassemia-related mutations have not been carried out. The aim of this study was to evaluate the prevalence of the H63D, S65C and C282Y mutations in the HFE gene among 102 individuals with alpha-thalassemia and 168 beta-thalassemia heterozygotes and to compare them with 173 control individuals without hemoglobinopathies. The allelic frequencies found in these three groups were 0.98, 2.38, and 0.29% for the C282Y mutation, 13.72, 13.70, and 9.54% for the H63D mutation, and 0, 0.60, and 0.87% for the S65C mutation, respectively. The chi-square test for multiple independent individuals indicated a significant difference among groups for the C282Y mutation, which was shown to be significant between the beta-thalassemia heterozygote and the control group by the Fisher exact test (P value = 0.009). The higher frequency of inheritance of the C282Y mutation in the HFE gene among beta-thalassemic patients may contribute to worsen the clinical picture of these individuals. In view of the characteristics of the Brazilian population, the present results emphasize the need to screen for HFE mutations in beta-thalassemia carriers.
Resumo:
This article describes the structures and functions of the erythrocyte membrane and its importance in transfusional medicine. The erythrocyte membrane is one of the best known membranes in terms of structure, function and genetic disorders. As any other plasma membrane, it mediates transport functions. It also provides the erythrocytes with their resilience and deformability. According to the International Society of Blood Transfusion (ISBT), more than 500 antigens are expressed in the erythrocyte membrane, and around 270 are involved in transfusion reaction cases and hemolytic diseases of the fetus and newborn. In the ISBT classification, the high frequency series is represented by antigens in more than 99% of population (high prevalence antigen). In transfusion, the absence of these antigens determines severe problems as for example, one woman without the P antigen suffered 6 repetitive miscarriages due to placental insufficiency, which was caused by an antibody formed against the absent P antigen. Some important erythrocyte membrane proteins are described here including Band 3, Glycophorins and spectrin. The most abundant integral membrane protein is Band 3 and its main function is to mediate exchange of chloride and bicarbonate anions across the plasma membrane. The second most abundant integral membrane protein in the human erythrocyte is sialoglycoprotein glycophorin A (GPA). With its high sialic acid content, GPA is the main contributor to the net negative cell-surface charge and is thus critical for minimizing cell-cell interactions and preventing red cell aggregation. Glycophorin C (GPC) is the receptor for PfEBP-2 (baebl, EBA-140), the newly identified erythrocyte binding ligand of Plasmodium falciparum. The ternary complex of spectrin, actin and 4.1R defines the nodes of the erythrocyte membrane skeletal network, and is inseparable from membrane stability when under mechanical stress. This erythrocyte membrane review is important for a better understanding of transfusion reactions, where the antibody formation against high prevalence antigens makes compatible transfusions difficult. The study of antigen diversity and biochemical characterization of different proteins will contribute to healthcare, as well as diagnosis, development of technology such as monoclonal antibody production and the therapeutic conduct of many diseases.
Resumo:
The most frequent cause of vasodilatory shockis outcome from sepsis, a systemic inflammatory response to infection, characterized by hypotension, hyporeactivity to the catecholamines and disseminated intravascular coagulation. The commonest cause of sepsis has reported to be infection with Gram-negative bacteria, typically E. coli, resulting in the release of lipopolysaccharide (endotoxin) from the bacterial outer membrane during autolysis or death of these microorganisms, with the involvement of many mediators, including nitric oxide. Later it was found that plasma levels of vasopressin in sepsis patients were abnormally low and observed that some patients with advanced septic shock were extremely sensitive to the activity actions of exogenous vasopressin.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Microbiologia - IBILCE