115 resultados para Ordinary Differential Equations and Applied Dynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the relationships between different concepts of stability in measure for the solutions of an autonomous or periodic neutral functional differential equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We associate to an arbitrary Z-gradation of the Lie algebra of a Lie group a system of Riccati-type first order differential equations. The particular cases under consideration are the ordinary Riccati and the matrix Riccati equations. The multidimensional extension of these equations is given. The generalisation of the associated Redheffer-Reid differential systems appears in a natural way. The connection between the Toda systems and the Riccati-type equations in lower and higher dimensions is established. Within this context the integrability problem for those equations is studied. As an illustration, some examples of the integrable multidimensional Riccati-type equations related to the maximally nonabelian Toda systems are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work concerns the application of the optimal control theory to Dengue epidemics. The dynamics of this insect-borne disease is modelled as a set of non-linear ordinary differential equations including the effect of educational campaigns organized to motivate the population to break the reproduction cycle of the mosquitoes by avoiding the accumulation of still water in open-air recipients. The cost functional is such that it reflects a compromise between actual financial spending (in insecticides and educational campaigns) and the population health (which can be objectively measured in terms of, for instance, treatment costs and loss of productivity). The optimal control problem is solved numerically using a multiple shooting method. However, the optimal control policy is difficult to implement by the health authorities because it is not practical to adjust the investment rate continuously in time. Therefore, a suboptimal control policy is computed assuming, as the admissible set, only those controls which are piecewise constant. The performance achieved by the optimal control and the sub-optimal control policies are compared with the cases of control using only insecticides when Breteau Index is greater or equal to 5 and the case of no-control. The results show that the sub-optimal policy yields a substantial reduction in the cost, in terms of the proposed functional, and is only slightly inferior to the optimal control policy. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lyapunov stability for a class of differential equation with piecewise constant argument (EPCA) is considered by means of the stability of a discrete equation. Applications to some nonlinear autonomous equations are given improving some linear known cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple mathematical model is developed to explain the appearance of oscillations in the dispersal of larvae from the food source in experimental populations of certain species of blowflies. The life history of the immature stage in these flies, and in a number of other insects, is a system with two populations, one of larvae dispersing on the soil and the other of larvae that burrow in the soil to pupate. The observed oscillations in the horizontal distribution of buried pupae at the end of the dispersal process are hypothesized to be a consequence of larval crowding at a given point in the pupation substrate. It is assumed that dispersing larvae are capable of perceiving variations in density of larvae buried at a given point in the substrate of pupation, and that pupal density may influence pupation of dispersing larvae. The assumed interaction between dispersing larvae and the larvae that are burrowing to pupate is modeled using the concept of non-local effects. Numerical solutions of integro-partial differential equations developed to model density-dependent immature dispersal demonstrate that variation in the parameter that governs the non-local interaction between dispersing and buried larvae induces oscillations in the final horizontal distribution of pupae. (C) 1997 Academic Press Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the existence of compact attractor for the abstract semilinear evolution equation u = Au + f (t, u); the results are applied to damped partial differential equations of hyperbolic type. Our approach is a combination of Liapunov method with the theory of alpha-contractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the study of the basic theory of existence, uniqueness and continuation of solutions of di®erential equations with piecewise constant argument. Results about asymptotic stability of the equation x(t) =-bx(t) + f(x([t])) with argu- ment [t], where [t] designates the greatest integer function, are established by means of dichotomic maps. Other example is given to illustrate the application of the method. Copyright © 2011 Watam Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the dynamics of the ideal and non-ideal Duffing oscillator with chaotic behavior is considered. In order to suppress the chaotic behavior and to control the system, a control signal is introduced in the system dynamics. The control strategy involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system in a periodic orbit, obtained by the harmonic balance method, and a state feedback control, obtained by the state dependent Riccati equation, to bring the system trajectory into the desired periodic orbit. Additionally, the control strategy includes an active magnetorheological damper to actuate on the system. The control force of the damper is a function of the electric current applied in the coil of the damper, that is based on the force given by the controller and on the velocity of the damper piston displacement. Numerical simulations demonstrate the effectiveness of the control strategy in leading the system from any initial condition to a desired orbit, and considering the mathematical model of the damper (MR), it was possible to control the force of the shock absorber (MR), by controlling the applied electric current in the coils of the damper. © 2012 Foundation for Scientific Research and Technological Innovation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We establish general conditions for the unique solvability of nonlinear measure functional differential equations in terms of properties of suitable linear majorants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A data set on Diatraea saccharalis and its parasitoids, Cotesia flavipes and tachinid flies, was analysed at five spatial scales-sugarcane mill, region, intermediary, farm and zone-to determine the role of spatial scale in synchrony patterns, and on temporal population variability. To analyse synchrony patterns, only the three highest spatial scales were considered, but for temporal population variability, all spatial scales were adopted. The synchrony-distance relationship revealed complex spatial structures depending on both species and spatial scale. Temporal population variability [SD log(x+1)] levels were highest at the smallest spatial scales although, in the majority of the cases, temporal variability was inversely dependent on sample size. All the species studied, with a few exceptions, presented spatial synchrony independent of spatial scale. The tachinid flies exhibited stronger synchrony dynamics than D. saccharalis and C. flavipes in all spatial scales with the latter displaying the weakest synchrony levels, except when mill spatial scales were compared. In some cases spatial synchrony may at first decay and then increase with distance, but the presence of such patterns can change depending on the spatial scale adopted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using conformal coordinates associated with conformal relativity-associated with de Sitter spacetime homeomorphic projection into Minkowski spacetime-we obtain a conformal Klein-Gordon partial differential equation, which is intimately related to the production of quasi-normal modes (QNMs) oscillations, in the context of electromagnetic and/or gravitational perturbations around, e.g., black holes. While QNMs arise as the solution of a wave-like equation with a Poschl-Teller potential, here we deduce and analytically solve a conformal 'radial' d'Alembert-like equation, from which we derive QNMs formal solutions, in a proposed alternative to more completely describe QNMs. As a by-product we show that this 'radial' equation can be identified with a Schrodinger-like equation in which the potential is exactly the second Poschl-Teller potential, and it can shed some new light on the investigations concerning QNMs.