24 resultados para Optimal values
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A first order analytical model for optimal small amplitude attitude maneuvers of spacecraft with cylindrical symmetry in an elliptical orbits is presented. The optimization problem is formulated as a Mayer problem with the control torques provided by a power limited propulsion system. The state is defined by Seffet-Andoyer's variables and the control by the components of the propulsive torques. The Pontryagin Maximum Principle is applied to the problem and the optimal torques are given explicitly in Serret-Andoyer's variables and their adjoints. For small amplitude attitude maneuvers, the optimal Hamiltonian function is linearized around a reference attitude. A complete first order analytical solution is obtained by simple quadrature and is expressed through a linear algebraic system involving the initial values of the adjoint variables. A numerical solution is obtained by taking the Euler angles formulation of the problem, solving the two-point boundary problem through the shooting method, and, then, determining the Serret-Andoyer variables through Serret-Andoyer transformation. Numerical results show that the first order solution provides a good approximation to the optimal control law and also that is possible to establish an optimal control law for the artificial satellite's attitude. (C) 2003 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this work, we use a nonlinear control based on Optimal Linear Control. We used as mathematical model a Duffing equation to model a supporting structure for an unbalanced rotating machine with limited power (non-ideal motor). Numerical simulations are performed for a set control parameter (depending on the voltage of the motor, that is, in the static and dynamic characteristic of the motor) The interaction of the non-ideal excitation with the structure may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the system. Chaotic behavior is obtained for values of the parameters. Then, the proposed control strategy is applied in order to regulate the chaotic behavior, in order to obtain a periodic orbit and to decrease its amplitude. Both methodologies were used in complete agreement between them. The purpose of the paper is to give suggestions and recommendations to designers and engineers on how to drive this kind of system through resonance.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
After an aggregated problem has been solved, it is often desirable to estimate the accuracy loss due to the fact that a simpler problem than the original one has been solved. One way of measuring this loss in accuracy is the difference in objective function values. To get the bounds for this difference, Zipkin (Operations Research 1980;28:406) has assumed, that a simple (knapsack-type) localization of an original optimal solution is known. Since then various extensions of Zipkin's bound have been proposed, but under the same assumption. A method to compute the bounds for variable aggregation for convex problems, based on general localization of the original solution is proposed. For some classes of the original problem it is shown how to construct the localization. Examples are given to illustrate the main constructions and a small numerical study is presented.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents an analyze of numeric conditioning of the Hessian matrix of Lagrangian of modified barrier function Lagrangian method (MBFL) and primal-dual logarithmic barrier method (PDLB), which are obtained in the process of solution of an optimal power flow problem (OPF). This analyze is done by a comparative study through the singular values decomposition (SVD) of those matrixes. In the MBLF method the inequality constraints are treated by the modified barrier and PDLB methods. The inequality constraints are transformed into equalities by introducing positive auxiliary variables and are perturbed by the barrier parameter. The first-order necessary conditions of the Lagrangian function are solved by Newton's method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reached. The electric systems IEEE 14, 162 and 300 buses were used in the comparative analysis. ©2007 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Some problems of Calculus of Variations do not have solutions in the class of classic continuous and smooth arcs. This suggests the need of a relaxation or extension of the problem ensuring the existence of a solution in some enlarged class of arcs. This work aims at the development of an extension for a more general optimal control problem with nonlinear control dynamics in which the control function takes values in some closed, but not necessarily bounded, set. To achieve this goal, we exploit the approach of R.V. Gamkrelidze based on the generalized controls, but related to discontinuous arcs. This leads to the notion of generalized impulsive control. The proposed extension links various approaches on the issue of extension found in the literature.