24 resultados para Optical path difference
Resumo:
O objetivo deste estudo foi avaliar a influência do cetoprofeno sobre o processo de reparação óssea em tíbias de ratos, por meio da análise da densidade óptica digital. Vinte ratos da linhagem Wistar foram divididos em 2 grupos: um grupo controle (sem tratamento) e um grupo tratado com cetoprofeno. Os procedimentos experimentais consistiram de: anestesia, cirurgia, administração do cetoprofeno e exame radiográfico. As imagens radiográficas foram adquiridas empregando-se o sensor digital Visualix GX-S-HDI™ e um aparelho de raios X. As radiografias foram realizadas nos períodos baseline (inicial), 7, 14, 21 e 30 dias pós-operatório, sendo a densidade óptica (DO) avaliada por meio do sistema Vix winTM 1.4. Os valores médios da leitura da do obtidos foram analisados estatisticamente por meio de ANOVA e teste de Tukey com nível de significância de 5%. No grupo controle, houve diferença estatisticamente significante (p=0,001) entre o tempo e a DO, enquanto no grupo tratado com cetoprofeno a diferença não foi estatisticamente significante (p=0,100). O grupo controle apresentou as menores proporções de do (%) no 1º e 7º dias e as maiores proporções de do (%) no 14º, 21º e 30º dias, com diferença estatisticamente significante (p=0,001). Não houve diferença estatisticamente significante (p=0,100) entre as proporções médias de do (%) no grupo tratado, independentemente do período de avaliação. Os achados deste trabalho sugerem que houve influência do cetoprofeno sobre o processo de reparo ósseo, uma vez que na primeira semana o medicamento proporcionou aumento na densidade óptica e provocou atraso na neoformação óssea após o 21º dia.
Resumo:
We report optical and morphological properties of poly(2-methoxy-5-hexyloxy-p-phenylenevinylene) (OC1OC6-PPV) films processed by casting, spin-coating (SC) and Langmuir-Blodgett (LB) techniques. The absorption spectra are practically the same, with an absorption maximum at approximately at 500 nm. For the photoluminescence (PL) spectra at low temperature (T=10K), a small but significant difference was noted in the cast film, in comparison with the LB and SC films. The zero-phonon transition shifted from 609 nm for the LB film to 615 and 621 nm for the SC and cast films, respectively. At room temperature, the PL spectra are similar for all films, and blue shifted by ca. 25 nm in comparison with the spectra at low temperature due to thermal disorder. Using atomic force microscopy (AFM) we inferred that the distinctive behavior of the cast film, probably associated with structural defects, is related to the large thickness of this film. The surface roughness, which was surprisingly higher for the LB film, apparently played no role in the emission properties of OC1OC6-PPV films.
Resumo:
We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.
Resumo:
The aim of this study was to determine the effect of the exposure of different endodontic materials to different dye solutions by evaluating the optical density of the dye solutions. Seventy-five plastic tubes were filled with one of the following materials: AH Plus, Sealapex, Portland cement, MTA (Angelus and Pro Root) and fifteen control plastic tubes were not. Each specimen of material and control was immersed in a container with 1 ml of each dye solution. A 0.1 ml-dye solution aliquote was removed before immersion and after 12, 24, 48 and 72 hours of each specimen immersion to record its optical density (OD) in a spectrophotometer. Statistical analysis was performed with ANOVA and Tukey tests (5%). No significant difference was found among any of the solution OD values for AH Plus cement. Portland cement promoted different OD values after 12 hours of immersion. MTA-Angelus cement presented different OD values only for 2% rhodamine B and the MTA-Pro Root cement presented different OD values in all 2% rhodamine B samples. Sealapex cement promoted a reduction in the India Ink OD values. Dye evaluation through OD seems to be an interesting method to select the best dye solution to use in a given marginal leakage study.
Resumo:
Photoluminescence and photo-excited conductivity data as well as structural analysis are presented for sol-gel SnO2 thin films doped with rare earth ions Eu3+ and Er3+, deposited by sol-gel-dip-coating technique. Photoluminescence spectra are obtained under excitation with various types of monochromatic light sources, such as Kr+, Ar+ and Nd:YAG lasers, besides a Xe lamp plus a selective monochromator with UV grating. The luminescence fine structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at the asymmetric grain boundary layer sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference in the capture energy is not so evident in these materials with nanoscocopic crystallites, even though the luminescence spectra are rather distinct. It seems that grain boundary scattering plays a major role in Eu-doped SnO2 films. Structural evaluation helps to interpret the electro-optical data. © 2010 IOP Publishing Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We demonstrate the supercontinuum (SC) generation in a suspended-core As2S3 chalcogenide microstructured optical fiber (MOF). The variation of SC is investigated by changing the fiber length, pump peak power and pump wavelength. In the case of long fibers (20 and 40 cm), the SC ranges are discontinuous and stop at the wavelengths shorter than 3500 nm, due to the absorption of fiber. In the case of short fibers (1.3 and 2.4 cm), the SC ranges are continuous and can extend to the wavelengths longer than 4 μm. The SC broadening is observed when the pump peak power increases from 0.24 to 1.32 kW at 2500 nm. The SC range increases with the pump wavelength changing from 2200 to 2600 nm, corresponding to the dispersion of As2S3 MOF from the normal to anomalous region. The SC generation is simulated by the generalized nonlinear Schrödinger equation. The simulation includes the SC difference between 1.3 and 2.4 cm long fiber by 2500 nm pumping, the variation of SC with pump peak power in 2.4 cm long fiber, and the variation of SC with pump wavelength in 1.3 cm long fiber. The simulation agrees well with the experiment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)