123 resultados para Open boundary conditions
Resumo:
We propose an approach to the nonvanishing boundary value problem for integrable hierarchies based on the dressing method. Then we apply the method to the AKNS hierarchy. The solutions are found by introducing appropriate vertex operators that takes into account the boundary conditions.
Resumo:
A Maximum Principle is derived for a class of optimal control problems arising in midcourse guidance, in which certain controls are represented by measures and, the state trajectories are functions of bounded variation. The optimality conditions improves on previous optimality conditions by allowing nonsmooth data, measurable time dependence, and a possibly time varying constraint set for the conventional controls.
Resumo:
An alternative formulation for guided electromagnetic fields in grounded chiral slabs is presented. This formulation is formally equivalent to the double Fourier transform method used by the authors to calculate the spectral fields in open chirostrip structures. In this paper, we have addressed the behavior of the electromagnetic fields in the vicinity of the ground plane and at the interface between the chiral substrate and the free space region. It was found that the boundary conditions for the magnetic field, valid for achiral media, are not completely satisfied when we deal with chiral material. Effects of chirality on electromagnetic field distributions and on surface wave dispersion curves were also analyzed.
Resumo:
Ablation is a thermal protection process with several applications in engineering, mainly in the field of airspace industry. The use of conventional materials must be quite restricted, because they would suffer catastrophic flaws due to thermal degradation of their structures. However, the same materials can be quite suitable once being protected by well-known ablative materials. The process that involves the ablative phenomena is complex, could involve the whole or partial loss of material that is sacrificed for absorption of energy. The analysis of the ablative process in a blunt body with revolution geometry will be made on the stagnation point area that can be simplified as a one-dimensional plane plate problem, hi this work the Generalized Integral Transform Technique (GITT) is employed for the solution of the non-linear system of coupled partial differential equations that model the phenomena. The solution of the problem is obtained by transforming the non-linear partial differential equation system to a system of coupled first order ordinary differential equations and then solving it by using well-established numerical routines. The results of interest such as the temperature field, the depth and the rate of removal of the ablative material are presented and compared with those ones available in the open literature.
Resumo:
We consider a scalar field theory on AdS, and show that the usual AdS/CFT prescription is unable to map to the boundary a part of the information arising from the quantization in the bulk. We propose a solution to this problem by defining the energy of the theory in the bulk through the Noether current corresponding to time displacements, and, in addition, by introducing a proper generalized AdS/CFT prescription. We also show how this extended formulation could be used to consistently describe double-trace interactions in the boundary. The formalism is illustrated by focusing on the non-minimally coupled case using Dirichlet boundary conditions. © 2004 Published by Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O grau de interferência depende da densidade de plantas daninhas que infestam a soja. O objetivo deste trabalho foi avaliar características de crescimento e nutrição mineral da soja mantida em convivência com densidades crescentes de Euphorbia heterophylla. O experimento foi conduzido em Jaboticabal, SP, Brasil, entre outubro e dezembro de 2008, em vasos mantidos em campo aberto. Os tratamentos consistiram em submeter uma planta de soja por vaso à convivência com 0, 1, 2, 4, 8 e 16 plantas de E. heterophylla por vaso, da semeadura até o início do florescimento. Nesse período, avaliaram-se, apenas na soja, a altura e o número de trifólios, e em ambas as espécies, a matéria seca e o acúmulo de macronutrientes. Observou-se variação na altura de plantas e redução no número de trifólios e no acúmulo de matéria seca e macronutrientes da soja devido ao maior acúmulo de matéria seca e macronutrientes por densidades crescentes de E. heterophylla. Conclui-se que a soja mantida em convivência com E. heterophylla teve o crescimento e o acúmulo de macronutrientes reduzidos em razão da interferência imposta pela planta daninha.
Resumo:
O objetivo deste trabalho foi estudar o desempenho produtivo, adaptabilidade e estabilidade fenotípica de seis genótipos de tomateiro na região de Marília, SP. Os experimentos foram conduzidos em nove ambientes (seis sob condições de cultivo protegido e três sob condições de céu aberto), com seis genótipos (Carmen, Diva, Donador, Graziela, Vita e HE-295), em blocos casualizados, com quatro repetições. Ocorreram diferenças significativas entre ambientes, e a média geral dos cultivos protegidos superou a dos cultivos a céu aberto quanto à produtividade, apesar de a média geral dos cultivos a céu aberto ser superior quanto ao peso médio de frutos. As cultivares, à exceção de HE-295, demonstraram alta estabilidade, merecendo destaque as cultivares Carmen, Donador e Vita, que tiveram rendimento médio superior ao da média geral, adaptabilidade geral e comportamento previsível em todos os ambientes estudados. Quanto ao peso médio dos frutos, as cultivares Diva e Vita foram as únicas que mostraram ampla adaptabilidade a todos os ambientes, comportamento previsível, além de apresentarem peso médio do fruto superior ao da média geral.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present two extension theorems for holomorphic generalized functions. The first one is a version of the classic Hartogs extension theorem. In this, we start from a holomorphic generalized function on an open neighbourhood of the bounded open boundary, extending it, holomorphically, to a full open. In the second theorem a generalized version of a classic result is obtained, done independently, in 1943, by Bochner and Severi. For this theorem, we start from a function that is holomorphic generalized and has a holomorphic representative on the bounded domain boundary, we extend it holomorphically the function, for the whole domain.
Resumo:
The problem of a spinless particle subject to a general mixing of vector and scalar inversely linear potentials in a two-dimensional world is analyzed. Exact bounded solutions are found in closed form by imposing boundary conditions on the eigenfunctions which ensure that the effective Hamiltonian is Hermitian for all the points of the space. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to investigate the role played by an external field on the Casimir energy density for massive fermions under S-1 x R-3 topology. Both twisted- and untwisted-spin connections are considered and the calculation in a closed form is performed using an alternative approach based on the combination of the analytic regularization method and the Euler-Maclaurin summation formula. It is shown that no mass scale appears in the final result and, therefore, Casimir effect arises only from the boundary conditions and vacuum fluctuations induced by the coupling with the external field.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)