188 resultados para Onlay bone graft
Resumo:
Purpose: This study was proposed to analyze histologically the process of repairing bone defects created surgically in the cranial vaults of rabbits. Materials and Methods: Thirty adult male rabbits (Oryctolagus cunilicus) received, under general anesthesia, bilateral parietal osteotomies by means of a 6mm-diameter trephine. The bony defects were divided into 4 groups. In group 1 the defect did not receive any treatment; in group 2 the defect was filled with lyophilized bovine bone (Biograft); in group 3 it was filled with bovine bone and covered with a bone matrix membrane (Bioplate); in group 4 it was covered with a bone matrix membrane. Animals were sacrificed in 3 equal groups at 15, 30, and 60 days. The specimens were subjected to routine laboratory procedures to evaluate the degree of bone repair. Results: After 60 days, new bone formation in group 2 was not satisfactory when compared to that of group 3. Large amounts of new bone formation in maturation were seen in group 3. In the defects covered with a membrane the results were similar to those of group 1 (ie, the cavity was filled with fibrous connective tissue). The implanted bone and membranes were totally resorbed. Discussion and Conclusions: the use of a membrane served as a barrier against the migration of cells from the adjacent tissue and the bone graft/membrane preserved the cavity space, resulting in an enhanced osteogenic effect.
Resumo:
The aim of this paper was report the clinical, radiographic, and histological case of adenomatoid odontogenic tumour (AOT) in adolescent woman as well as present the reconstructive treatment of AOT using fresh-frozen human bone graft with guided bone regeneration. AOT is a benign, noninvasive lesion with slow but progressive growth. Biopsy and microscopic examination confirmed the presence of an AOT. Treatment was conservative and the prognosis was excellent. The patient has been followed-up for without recurrence. The use of fresh-frozen human bone graft can be a safe choice for reconstruction of the bone defects to treat AOT.
Resumo:
Purpose: The aim of this study was to quantitatively evaluate and qualitatively describe autogenous bone graft healing with or without an expanded polytetrafluoroethylene (e-PTFE) membrane in ovariectornized rats. Materials and Methods: Eighty Wistar rats, weighing approximately 300 g each, were used. A graft was obtained from the parietal bone and fixed to the sidewall of each animal's left mandibular ramus. The animals were randomly divided into four experimental groups (n = 20 in each group): group 1, sham operated and autogenous bone graft only- group 2, sham operated and autogenous bone graft covered by e-PTFE membrane; group 3, ovariectornized (OVX) and autogenous bone graft only- group 4, OVX and autogenous bone graft covered by e-PTFE membrane. The animals were sacrificed at five different time points: immediately after grafting or at 7, 21, 45, or 60 days after grafting. Histologic examination and morphometric measurement of the sections were performed, and values were submitted to statistical analyses. Results: Both groups (sham and OVX) experienced loss of the original graft volume when it was not covered by the membrane, whereas use of the membrane resulted in additional bone formation beyond the edges of the graft and under the membrane. Histologic analysis showed integration of the grafts in all animals, although a larger number of marrow spaces was found in OVX groups. Conclusions: Association of bone graft with an e-PTFE membrane resulted in maintenance of its original volume as well as formation of new bone that filled the space under the membrane. Osteopenia did not influence bone graft repair, regardless of whether or not it was associated with e-PTFE membrane, but descriptive histologic analysis showed larger numbers of marrow spaces in the bone graft and receptor bed and formation of new bone in the OVX animals. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:1074-1082
Resumo:
Tibia segmental defect healing in sheep were clinically, radiographically and histologically evaluated. Twelve young sheep aged four to five months were divided into two groups, G1 and G2. A 3.5 cm long segmental defect was created in the right tibial diaphysis with maintenance of the periosteum. The bone defects in both groups were stabilized with a bone plate combined with a titanium cage. In G1 the cage was filled with pieces of autologous cortical bone graft. In G2 it was filled with a composite biomaterial which consisted of inorganic bovine bone, demineralized bovine bone, a pool of bovine bone morphogenetic proteins bound to absorbable ultra-thin powdered hydroxyapatiteand bone-derived denaturized collagen. Except for one G1 animal, all of them showed normal limb function 60 days after surgery. Radiographic examination showed initial formation of periosteal callus in both groups at osteo-tomy sites, over the plate or cage 15 days postoperatively. At 60 and 90 days callus remodeling occurred. Histological and morphometric analysis at 90 days after surgery showed that the quantity of implanted materials in G1 and G2 were similar, and the quantity of new bone formation was less (p = 0.0048) and more immature in G1 than G2, occupying 51 +/- 3.46% and 62 +/- 6.26% of the cage space, respectively. These results suggest that the composite biomaterial tested was a good alternative to autologous cartical bone graft in this experimental ovine tibial defect. However, additional evaluation is warranted prior to its clinical usage.
Resumo:
Background: The purpose of this study was to histologically evaluate the healing of surgically created Class II furcation defects treated using an autogenous bone (AB) graft with or without a calcium sulfate (CS) barrier. Methods: The second, third, and fourth mandibular premolars (P2, P3, and P4) of six mongrel dogs were used in this study. Class II furcation defects (5 mm in height × 2 mm in depth) were surgically created and immediately treated. Teeth were randomly divided into three groups: group C (control), in which the defect was filled with blood clot; group AB, in which the defect was filled with AB graft; and group AB/CS, in which the defect was filled with AB graft and covered by a CS barrier. Elaps were repositioned to cover all defects. The animals were euthanized 90 days post-surgery. Mesio-distal serial sections were obtained and stained with either hematoxylin and eosin or Masson's trichrome. Histometric, using image-analysis software, and histologic analyses were performed. Linear and area measurements of periodontal healing were evaluated and calculated as a percentage of the original defect. Percentage data were transformed into arccosine for statistical analysis (analysis of variance; P<0.05). Results: Periodontal regeneration in the three groups was similar. Regeneration of bone and connective tissue in the furcation defects was incomplete in most of the specimens. Statistically significant differences were not found in any of the evaluated parameters among the groups. Conclusion: Periodontal healing was similar using surgical debridement alone, AB graft, or AB graft with a CS barrier in the treatment of Class II furcation defects.
Resumo:
Purpose: Bone maintenance after mandibular reconstruction with autogenous iliac crest may be disappointing due to extensive resorption in the long term. The potential of the guided-bone regeneration (GBR) technique to enhance the healing process in segmental defects lacks comprehensive scientific documentation. This study aimed to investigate the influence of polylactide membrane permeability on the fate of iliac bone graft (BG) used to treat mandibular segmental defects. Materials and Methods: Unilateral 10-mm-wide segmental defects were created through the mandibles of 34 mongrel dogs. All defects were mechanically stabilized, and the animals were divided into 6 treatment groups: control, BG alone, microporous membrane (poly L/DL-lactide 80/20%) (Mi); Mi plus BG; microporous laser-perforated (15 cm2 ratio) membrane (Mip), and Mip plus BG. Calcein fluorochrome was injected intravenously at 3 months, and animal euthanasia was carried out at 6 months postoperatively. Results: Histomorphometry showed that BG protected by Mip was consistently related to larger amounts of bone compared with other groups (P ≤ .0001). No difference was found between defects treated with Mip alone and BG alone. Mi alone rendered the least bone area and reduced the amount of grafted bone to control levels. Data from bone labeling indicated that the bone formation process was incipient in the BG group at 3 months postoperatively regardless of whether or not it was covered by membrane. In contrast, GBR with Mip tended to enhance bone formation activity at 3 months. Conclusions: The use of Mip alone could be a useful alternative to BG. The combination of Mip membrane and BG efficiently delivered increased bone amounts in segmental defects compared with other treatment modalities. © 2008 American Association of Oral and Maxillofacial Surgeons.
Resumo:
Maxillomandibular reconstructions are traditionally performed by means of autogenous bone grafts collected from intraoral donor areas and extraoral donor areas such as clavicle, iliac bone, rib, and tibia. The calvarial bone has been studied as an alternative donor area, with a low incidence of complications and minimal postoperative morbidity. Complications such as dural lacerations associated with cerebrospinal fluid leakage and extradural and subdural bleeding were minimized due to the use of surgical trepan, allowing the diploic layer delimitation before the osteotomy, preserving the internal calvarial cortical. The purpose of this article is to suggest a new technique for the obtainment of calvarial bone grafts with surgical trepan.
Resumo:
Aims: The purpose of this study was to evaluate the expression of proteins that participate in the osteoinduction stage (VEGF, BMP2 and CBFA1) of the process of bone regeneration of defects created in rat calvariae and filled with autogenous bone block grafts. Materials and methods: 10 adult male rats (Rattus norvegicus albinus, Wistar) were used, who received two bone defects measuring 5 mm each in the calvariae. The bone defects constituted two experimental groups (n = 10): Control Group (CONT) (defects filled with a coagulum); Graft Group (GR) (defects filled with autogenous bone removed from the contralateral defect). The animals were submitted to euthanasia at 7 and 30 days post-operatively. Results: Quantitative analysis demonstrated significantly greater bone formation in Group GR, but the presence of the studied proteins was significantly greater in the CONT Group in both time intervals of observation. Conclusion: It was not possible in this study in cortical bone block groups to detect the osteoinductive proteins in a significant amount during the repair process. © 2013 European Association for Cranio-Maxillo-Facial Surgery.
Resumo:
The orbit is an irregular conical cavity formed from 7 bones including the frontal, sphenoid, zygomatic, maxillary, ethmoid, lacrimal, and palatine bones. Fractures of the internal orbit can cause a number of problems, including diplopia, ocular muscle entrapment, and enophthalmos. Although muscle entrapment is relatively rare, diplopia and enophthalmos are relatively common sequelae of internal orbital fractures. Medial orbital wall fracture is relatively uncommon and represents a challenge for its anatomical reconstruction. In this context, autogenous bone graft has been the criterion standard to provide framework for facial skeleton and orbital walls. Therefore, it is possible to harvest grafts of varying size and contour, and the operation is performed through the bicoronal incision, which is the usual approach to major orbital reconstruction. Thus, this article aimed to describe a patient with a pure medial orbital wall fracture, and it was causing diplopia and enophthalmos. The orbital fracture was treated using autogenous bone graft from calvarial bone. The authors show a follow-up of 12 months, with facial symmetry and without diplopia and enophthalmos. In addition, a computed tomography scan shows excellent bone healing at the anterior and posterior parts of the medial orbital wall reconstruction. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Moderate and controlled loading environments support or enhance osteogenesis, and, consequently, a high degree of bone-to-implant contact can be acquired. This is because when osteoprogenitor cells are exposed to limited physical deformation, their differentiation into osteoblasts is enhanced. Then, some range of microstrain is considered advantageous for bone ingrowth and osseointegration. The primary stability has been considered one of the main clinical means of controlling micromotion between the implant and the forming interfacial tissue, which helps to establish the proper mechanical environment for osteogenesis. Based on the biological aspects of immediate loading (IL), the objective of this study is to present a clinical case of maxillary arch rehabilitation using immediate loading with implant-supported fixed restoration after bone graft. Ten dental implants were placed in the maxilla 6 months after the autogenous bone graft, removed from the mandible (bilateral oblique line and chin), followed by the installation of an immediate-load fixed cross-arch implant-supported restoration because primary stability was reached for 8 implants. In addition, instructions about masticatory function and how it is related to interfacial micromotion were addressed and emphasized to the patient. The reasons for the IL were further avoidance of an interim healing phase, a potential reduction in the number of clinical interventions for the patient, and aesthetic reasons. After monitoring the rehabilitation for 8 years, the authors can conclude that maxillary IL can be performed followed by a well-established treatment planning based on computed tomography, providing immediate esthetics and function to the patient even when autogenous bone graft was previously performed in the maxilla.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study, the physicochemical characteristics of calcium phosphate based bioactive ceramics of different compositions and blends presenting similar micro/nanoporosity and micrometer scale surface texture were characterized and evaluated in an in vivo model. Prior to the animal experiment, the porosity, surface area, particle size distribution, phase quantification, and dissolution of the materials tested were evaluated. The bone regenerative properties of the materials were evaluated using a rabbit calvaria model. After 2, 4, and 8 weeks, the animals were sacrificed and all samples were subjected to histologic observation and histomorphometric analysis. The material characterization showed that all materials tested presented variation in particle size, porosity and composition with different degrees of HA/TCP/lower stoichiometry phase ratios. Histologically, the calvarial defects presented temporal bone filling suggesting that all material groups were biocompatible and osteoconductive. Among the different materials tested, there were significant differences found in the amount of bone formation as a function of time. At 8 weeks, the micro/nanoporous material presenting similar to 55,TCP:45%,HA composition ratio presented higher amounts of new bone regeneration relative to other blends and a decrease in the amount of soft tissue infiltration. (C) 2014 Elsevier B.V. All rights reserved.