61 resultados para One dimensional
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The influence of dissipation on the simplified Fermi-Ulam accelerator model (SFUM) is investigated. The model is described in terms of a two-dimensional nonlinear mapping obtained from differential equations. It is shown that a dissipative SFUM possesses regions of phase space characterized by the property of area preservation.
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper we prove that the spatial discretization of a one dimensional system of parabolic equations. with suitably small step size, contains exactly the same asymptotic dynamics as the continuous problem. (C) 2000 Academic Press.
Resumo:
We theoretically study many-body excitations in three different quasi-one-dimensional (Q1D) electron systems: (i) those formed on the surface of liquid Helium; (ii) in two coupled semiconductor quantum wires; and (iii) Q1D electrons embedded in polar semiconductor-based quantum wires. Our results show intersubband coupling between higher subbands and the two lowest subbands affecting even the lower energy intersubband plasmons on the liquid Helium surface. Concerning the second system, we show a pronounced extra peak appearing in the intersubband impurity spectral function for temperatures as high as 20 K. We finally show coupled intersubband plasmon-phonon modes surviving for temperatures up to 300 K.
Resumo:
In this work we consider the effect of a spatially dependent mass over the solution of the Klein-Gordon equation in 1 + 1 dimensions, particularly the case of inversely linear scalar potential, which usually presents problems of divergence of the ground-state wave function at the origin, and possible nonexistence of the even-parity wave functions. Here we study this problem, showing that for a certain dependence of the mass with respect to the coordinate, this problem disappears. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
There is a four-parameter family of point interactions in one-dimensional quantum mechanics. They represent all possible self-adjoint extensions of the kinetic energy operator. If time-reversal invariance is imposed, the number of parameters is reduced to three. One of these point interactions is the familiar delta function potential but the other generalized ones do not seem to be widely known. We present a pedestrian approach to this subject and comment on a recent controversy in the literature concerning the so-called delta' interaction. We emphasize that there is little resemblance between the delta' interaction and what its name suggests.
Resumo:
We present the zero-temperature phase diagram of the one-dimensional t(2g)-orbital Hubbard model, obtained using the density-matrix renormalization group and Lanczos techniques. Emphasis is given to the case of the electron density n=5 corresponding to five electrons per site, while several other cases for electron densities between n=3 and 6 are also studied. At n=5, our results indicate a first-order transition between a paramagnetic (PM) insulator phase, with power-law slowly decaying correlations, and a fully polarized ferromagnetic (FM) state by tuning the Hund's coupling. The results also suggest a transition from the n=5 PM insulator phase to a metallic regime by changing the electron density, either via hole or electron doping. The behavior of the spin, charge, and orbital correlation functions in the FM and PM states are also described in the text and discussed. The robustness of these two states against varying parameters suggests that they may be of relevance in quasi-one-dimensional Co-oxide materials, or even in higher dimensional cobaltite systems as well.
Resumo:
We prove that a 'positive probability' subset of the boundary of '{uniformly expanding circle transformations}' consists of Kupka-Smale maps. More precisely, we construct an open class of two-parameter families of circle maps (f(alpha,theta))(alpha,theta) such that, for a positive Lebesgue measure subset of values of alpha, the family (f(alpha,theta))(theta) crosses the boundary of the uniformly expanding domain at a map for which all periodic points are hyperbolic (expanding) and no critical point is pre-periodic. Furthermore, these maps admit an absolutely continuous invariant measure. We also provide information about the geometry of the boundary of the set of hyperbolic maps.
Resumo:
An application of the linear machine one-dimensional analysis method to the modeling of a conventional asynchronous induction motor, considered as a particular case of linear and sectorial machines, is described. A mathematical model for the calculation of the propulsive force developed by this motor, taking into account the transversal edge effect, is derived from the application of the one-dimensional theory and presented in this paper. As an application example, an induction motor is analyzed by means of the one-dimensional theory.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)