71 resultados para Oil well drilling.
Resumo:
In engineering practical systems the excitation source is generally dependent on the system dynamic structure. In this paper we analyze a self-excited oscillating system due to dry friction which interacts with an energy source of limited power supply (non ideal problem). The mechanical system consists of an oscillating system sliding on a moving belt driven by a limited power supply. In the oscillating system considered here, dry friction acts as an excitation mechanism for stick-slip oscillations. The stick-slip chaotic oscillations are investigated because the knowledge of their dynamic characteristics is an important step in system design and control. Many engineering systems present stick-slip chaotic oscillations such as machine tools, oil well drillstrings, car brakes and others.
Resumo:
Rheology has the purpose to study the flux and deformation of materials when submitted to some tension or outer mechanical solicitation. In practice, the effective scientific field broached by rheology is restricted only to the study of homogeneous fluids behavior, in which are included eminent liquids, particles suspensions, and emulsions. The viscosity (η) and the yield stress (τ 0) are the two basic values that define the fluids' behavior. The first one is the proportionality constant that relates the shear rate (γ) with the shear stress (τ) applied, while the second indicates the minimal tension for the flowage beginning. The fluids that obey the Newton's relation - Newtonians fluids - display the constant viscosity and the null yield stress. It's the case of diluted suspensions and grate amount of the pure liquids (water, acetone, alcohol, etc.) in which the viscosity is an intrinsic characteristic that depends on temperature and, in a less significant way, pressure. The suspension, titled Cement Paste, is defined as being a mixture of water and cement with, or without, a superplasticizer additive. The cement paste has a non-Newtonian fluid behavior (pseudoplastic), showing a viscosity that varies in accord to the applied shear stress and significant deformations are obtained from a delimited yield stress. In some cases, systems can also manifest the influence of chemical additives used to modify the interactions fluid/particles, besides the introduced modifications by the presence of incorporated air. To the cement paste the rheometric rehearsals were made using the rheometer R/S Brookfield that controls shear stress and shear rate in accord to the rheological model of Herschel-Bulkley that seems to better adapt to this kind of suspension's behavior. This paper shows the results of rheometrical rehearsals on the cement paste that were produced with cements HOLCIM MC-20 RS and CPV-ARI RS with the addition of superplasticizer additives based of napthaline and polycarboxilate, with and without a constant agitation of the mixture. The obtainment of dosages of superplasticizer additives, as well as the water/cement ratio, at the cement at the fluidify rate determination, was done in a total of 12 different mixtures. It's observed that the rheological parameters seem to vary according to the cement type, the superplasticizer type, and the methodology applied at the fluidity rate determination.
Resumo:
In engineering, for correct designing the structural components required for cyclical stresses, it is necessary to determine a limit of resistance to fatigue, which is the maximum amplitude of the applied tension under which the fatigue failure does not occurs after a certain number cycles. The marine environment is hostile, not only by the high pressure, corrosion, but also by low temperatures. Petrol Production units, composed of the risers (pipelines connecting the oil well to the ship), are dimensioned to remain installed for periods of 20 up to 30 years, and must therefore be prepared to support various efforts, such as tidal, wind currents and everything that is related. This paper focuses on a study on the fatigue behavior of microalloyed steel, API 5L Grade X70, used to transport oil and gas by pipelines. For analysis, we obtained the curves S-N (stress vs. number of cycles) using laboratory data collected from cylindrical longitudinal and transverse specimens used in axial fatigue test in accordance with ASTM E466. The tensile tests and microhardness were performed to characterize the mechanical properties of the samples, and it was found that the values meet the specifications of the standard API 5L. To characterize microstructurally the material, it was also made a metallographic analysis of the steel under study, and the origin of the fatigue crack was investigated with the support of a scanning electron microscope (SEM).
Resumo:
This work focuses on a study on the fatigue behavior of a microalloyed steel API 5L X70, used in pipes lines to transport oil and gas. These types of steels have excellent mechanical resistance values and ductility and therefore increased their study driven by increased demand for oil and especially natural gas, which consequently raises the need to build new pipelines to transport these products. The oil extraction units, composed of the risers (pipelines connecting the oil well to the ship), are dimensioned to remain installed for periods of 20 to 30 years in the marine environment, a hostile environment for high pressure, corrosion, low temperatures and the stresses caused by the movement of water and tides. For analysis, the S-N (stress versus number of cycles) curves were obtained from data collected from bodies-of-proof cylindrical longitudinal, transverse and that one removed from the weld area of the pipe, tested in accordance with ASTM E466. Tensile tests were performed for characterizing the mechanical properties of the samples and welded joints, concluded that the values meet the specifications of the standard API 5L. To characterize microstructural material, also metallographic analysis was made of regions of the base metal and the HAZ. The results of fatigue tests demonstrated a higher life for the specimens removed from the longitudinal direction the pipe, followed by those in the transverse direction and, finally, the welded joint. The origins of the fatigue cracks were determined by scanning electron microscopy (SEM)
Resumo:
This paper presents a multi-agent architecture that was designed to develop processes supervision and control systems, with the main objective to automate tasks that are repetitive and stressful, and error prone when performed by humans. A set of agents were identified, based on the study of a number of applications found in the literature, that use the approach of multi-agent systems for data integration and process monitoring to faults detection and diagnosis, these agents are used as basis of the proposed multi-agent architecture. A prototype system for the analysis of abnormalities during oil wells drilling was developed.
Resumo:
The main concern of activities developed in oil and gas well construction is safety. But safety during the well construction process is not a trivial subject. Today risk evaluation approaches are based in static analyses of existent systems. In other words, those approaches do not allow a dynamic analysis that evaluates the risk for each alteration of the context. This paper proposes the use of Quantitative and Dynamic Risk Assessment (QDRA) to assess the degree of safety of each planned job. The QDRA can be understood as a safe job analysis approach, developed with the purpose of quantifying the safety degree in entire well construction and maintenance activities. The QDRA is intended to be used in the planning stages of well construction and maintenance, where the effects of hazard on job sequence are important unknowns. This paper also presents definitions of barrier, and barriers integrated set (BIS), and a modeling technique showing their relationships. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Molecular mobility in castor oil based polyurethane was investigated with thermally stimulated depolarization current (TSDC) measurements and alternating-current (ac) dielectric relaxation spectroscopy. Three peaks could be observed in TSDC thermograms from 173 to 373 K. The relaxation located at 213 K could be attributed to the change in the molecular chain due to the interaction between the isocyanate and the solvent, and it was well fitted with the Vogel-Fulcher-Tammann equation. The other two peaks were located at 274 and 365 K and could be attributed to interfacial polarization and space charge, respectively. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Artemisia annua tem sido utilizada tradicionalmente para o tratamento de malária e febre na China devido à presença do princípio ativo, artemisinina. O presente trabalho avaliou a atividade central de do óleo essencial obtido por hidrodestilação e do extrato etanólico bruto de folhas frescas de A. annua em modelo in vivo como parte de um screening farmacológico dessa espécie. Sono induzido por pentobarbital, nado forçado e o ensaio de campo aberto são modelos de estudo conhecidos para o estudo de fármacos sobre depressão induzida. A administração do óleo essencial ou extrato bruto etanólico de A. annua aumentaram o tempo de imobilidade no teste do nado forçado. Por outro lado, diminuíram outros parâmetros no campo aberto, como ambulação, exploração, o ato de lamber as patas ou se lamber. Ambos produtos aumentaram o tempo de sono induzido por pentobarbital, com o óleo essencial apresentando um efeito superior ao do extrato. Pela análise dos resultados, é possível sugerir que tanto o extrato bem como o óleo essencial podem atuar como depressores do Sistema Nervoso Central (SNC).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)