25 resultados para Observational techniques and algorithms
Resumo:
Pós-graduação em Educação Escolar - FCLAR
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
We present an implementation of the F-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars. We searched a frequency f(0) range from 100 Hz to 1 kHz and the frequency dependent spindown f(1) range from -1.6(f(0)/100 Hz) x 10(-9) Hz s(-1) to zero. A large part of this frequency-spindown space was unexplored by any of the all-sky searches published so far. Our method consisted of a coherent search over two-day periods using the F-statistic, followed by a search for coincidences among the candidates from the two-day segments. We have introduced a number of novel techniques and algorithms that allow the use of the fast Fourier transform (FFT) algorithm in the coherent part of the search resulting in a fifty-fold speed-up in computation of the F-statistic with respect to the algorithm used in the other pipelines. No significant gravitational wave signal was found. The sensitivity of the search was estimated by injecting signals into the data. In the most sensitive parts of the detector band more than 90% of signals would have been detected with dimensionless gravitational-wave amplitude greater than 5 x 10(-24).
Resumo:
Purpose: The purpose of this in vitro study was to compare the dimensional accuracy of a stone index and of 3 impression techniques (tapered impression copings, squared impression copings, and squared impression copings splinted with acrylic resin) associated with 3 pouring techniques (conventional, pouring using latex tubes fitted onto analogs, and pouring after joining the analogs with acrylic resin) for implant-supported prostheses. Materials and Methods: A mandibular brass cast with 4 stainless steel implant-abutment analogs, a framework, and 2 aluminum custom trays were fabricated. Polyether impression material was used for all impressions. Ten groups were formed (a control group and 9 test groups formed by combining each pouring technique and impression technique). Five casts were made per group for a total of 50 casts and 200 gap values (1 gap value for each implant-abutment analog). Results: The mean gap value with the index technique was 27.07 mu m. With the conventional pouring technique, the mean gap values were 116.97 mu m for the tapered group, 5784 mu m for the squared group, and 73.17 mu m for the squared splinted group. With pouring using latex tubes, the mean gap values were 65.69 mu m for the tapered group, 38.03 mu m for the squared group, and 82.47 mu m for the squared splinted group. With pouring after joining the analogs with acrylic resin, the mean gap values were 141.12 jum for the tapered group, 74.19 mu m for the squared group, and 104.67 mu m for the squared splinted group. No significant difference was detected among Index, squarellatex techniques, and master cast (P > .05). Conclusions: The most accurate impression technique utilized squared copings. The most accurate pouring technique for making the impression with tapered or squared copings utilized latex tubes. The pouring did not influence the accuracy of the stone casts when using splinted squared impression copings. Either the index technique or the use of squared coping combined with the latex-tube pouring technique are preferred methods for making implant-supported fixed restorations with dimensional accuracy.
Resumo:
This article introduces the software program called EthoSeq, which is designed to extract probabilistic behavioral sequences (tree-generated sequences, or TGSs) from observational data and to prepare a TGS-species matrix for phylogenetic analysis. The program uses Graph Theory algorithms to automatically detect behavioral patterns within the observational sessions. It includes filtering tools to adjust the search procedure to user-specified statistical needs. Preliminary analyses of data sets, such as grooming sequences in birds and foraging tactics in spiders, uncover a large number of TGSs which together yield single phylogenetic trees. An example of the use of the program is our analysis of felid grooming sequences, in which we have obtained 1,386 felid grooming TGSs for seven species, resulting in a single phylogeny. These results show that behavior is definitely useful in phylogenetic analysis. EthoSeq simplifies and automates such analyses, uncovers much of the hidden patterns of long behavioral sequences, and prepares this data for further analysis with standard phylogenetic programs. We hope it will encourage many empirical studies on the evolution of behavior.
Resumo:
This work has as objectives the implementation of a intelligent computational tool to identify the non-technical losses and to select its most relevant features, considering information from the database with industrial consumers profiles of a power company. The solution to this problem is not trivial and not of regional character, the minimization of non-technical loss represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. This work presents using the WEKA software to the proposed objective, comparing various classification techniques and optimization through intelligent algorithms, this way, can be possible to automate applications on Smart Grids. © 2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective. The general aim of this article is to describe the state-of-the-art of biocompatibility testing for dental materials, and present new strategies for improving operative dentistry techniques and the biocompatibility of dental materials as they relate to their interaction with the dentin-pulp complex.Methods. The literature was reviewed focusing on articles related to biocompatibilty testing, the dentin-pulp complex and new strategies and materials for operative dentistry. For this purpose, the PubMed database as well as 118 articles published in English from 1939 to 2014 were searched. Data concerning types of biological tests and standardization of in vitro and in vivo protocols employed to evaluate the cytotoxicity and biocompatibility of dental materials were also searched from the US Food and Drug Administration (FDA), International Standards Organization (ISO) and American National Standards Institute (ANSI).Results. While there is an ongoing search for feasible strategies in the molecular approach to direct the repair or regeneration of structures that form the oral tissues, it is necessary for professionals to master the clinical therapies available at present. In turn, these techniques must be applied based on knowledge of the morphological and physiological characteristics of the tissues involved, as well as the physical, mechanical and biologic properties of the biomaterials recommended for each specific situation. Thus, particularly within modern esthetic restorative dentistry, the use of minimally invasive operative techniques associated with the use of dental materials with excellent properties and scientifically proved by means of clinical and laboratory studies must be a routine for dentists. This professional and responsible attitude will certainly result in greater possibility of achieving clinical success, benefiting patients and dentists themselves.Signcance. This article provides a general and critical view of the relations that permeate the interaction between dental materials and the dentin-pulp complex, and establish real possibilities and strategies that favor biocompatibility of the present and new products used in Dentistry, which will certainly benefit clinicians and their patients. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Evolutionary algorithms have been widely used for Artificial Neural Networks (ANN) training, being the idea to update the neurons' weights using social dynamics of living organisms in order to decrease the classification error. In this paper, we have introduced Social-Spider Optimization to improve the training phase of ANN with Multilayer perceptrons, and we validated the proposed approach in the context of Parkinson's Disease recognition. The experimental section has been carried out against with five other well-known meta-heuristics techniques, and it has shown SSO can be a suitable approach for ANN-MLP training step.