226 resultados para OXIDATIVE BURST
Release of intermediate reactive hydrogen peroxide by macrophage cells activated by natural products
Resumo:
By determining the hydrogen peroxide (H2O2) released in cultures of peritoneal macrophage cells from Swiss mice, we evaluated the action of 27 vegetable compounds (pristimerin, tingenone, jatrophone, palustric acid, lupeol, cladrastin, ocoteine, boldine, tomatine, yohimbine, reserpine, escopoletin, esculine, plumericin, diosgenin, deoxyschizandrin, p-arbutin, mangiferin, and others) using a 2 mg/ml solution of each compound (100 mug/well). Macrophages are cells responsible for the development of the immunological response reaction, liberating more than one hundred compounds into the extracellular environment. Among these are the various cytokines and the intermediate compounds of nitrogen (NO) and oxygen (H2O2). This coordinated sequence of biochemical reactions is known as the oxidative burst. When we compared the results with those obtained with zymosan (an important stimulator of H2O2) we observed that the compounds showing the highest activity were substances 2 (tingenone), 16 (reserpine) and 20. Other substances such as compounds 1, 4, 5, 6, 8, 12, 13, 14, 15, 17, 19, 23, 24, 26, and 27 also showed a certain activity, but with less intensity than the aforementioned ones. Compounds 3, 7, 9, 10, 11, 18, 21, 22 and 25 presented no activity. These results suggest that natural products (mainly tingenone and reserpine and others) with different chemical structures are strong immunological modulators. However, further tests are needed to determine the 'oxidative burst' in future studies.
Resumo:
Flavonoids, including quercetin, have been reported to modulate the ability of Staphylococcus aureus to adhere to host tissue without exhibiting direct antibacterial activity. In the present study, we evaluated the interaction of S. aureus pretreated with 40 μg/mL of quercetin with neutrophils to assay oxidative burst stimulation, using luminol-amplified chemiluminescence. S. aureus pre-incubated with subinhibitory concentration of quercetin induced significantly less light emission by neutrophils than did untreated bacteria. The results of the present study demonstrate that quercetin decreases S. aureus uptake by neutrophils.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Biological activities of flavonoids have been extensively reviewed in literature. The biochemical profile of afzelin, kaempferitrin, and pterogynoside acting on reactive oxygen species was investigated in this paper. The flavonoids were able to act as scavengers of the superoxide anion, hypochlorous acid and taurine chloramine. Although flavonoids are naturally occurring substances in plants which antioxidant activities have been widely advertised as beneficial, afzelin, kaempferitrin, and pterogynoside were able to promote cytotoxic effect. In red blood cells this toxicity was enhanced, depending on flavonoids concentration, in the presence of hypochlorous acid, but reduced in the presence of 2,20 -azo-bis(2-amidinopropane) free radical. These flavonoids had also promoted the death of neutrophils, which was exacerbated when the oxidative burst was initiated by phorbol miristate acetate. Therefore, despite their well-known scavenging action toward free radicals and oxidants, these compounds could be very harmful to living organisms through their action over erythrocytes and neutrophils.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Dogs are commonly affected by hyperglycemic conditions. Hyperglycemia compromises the immune response and favors bacterial infections; however, reports on the effects of glucose on neutrophil oxidative metabolism and apoptosis are conflicting in humans and rare in dogs. Considering the many complex factors that affect neutrophil oxidative metabolism in vivo, we investigated in vitro the specific effect of high concentrations of glucose on superoxide production and apoptosis rate in neutrophils from healthy dogs.Results: The capacity of the neutrophils to reduce tetrazolium nitroblue decreased significantly in the higher concentration of glucose (15.13 ± 9.73% (8 mmol/L) versus 8.93 ± 5.71% (16 mmol/L)). However, there were no changes in tetrazolium nitroblue reduction at different glucose concentrations when the neutrophils were first activated with phorbol myristate acetate. High concentrations of glucose did not affect the viability and apoptosis rate of canine neutrophils either with or without prior camptothecin stimulation. This study provides the first evidence that high concentrations of glucose inhibit the oxidative metabolism of canine neutrophils in vitro in a manner similar to that which occurs in humans, and that the decrease in superoxide production did not increase the apoptosis rate.Conclusions: A high concentration of glucose reduces the oxidative metabolism of canine neutrophils in vitro. It is likely that glucose at high concentrations rapidly affects membrane receptors responsible for the activation of NADPH oxidase in neutrophils; therefore, the nonspecific immune response can be compromised in dogs with acute and chronic hyperglycemic conditions. © 2013 Bosco et al.; licensee BioMed Central Ltd.
Resumo:
A novel method to measure oxidative stress resulting from exhaustive exercise in rats is presented. In this new procedure we evaluated the erythrocyte antioxidant enzymes, catalase ( CAT) and glutathione reductase (GR), the plasma oxidative attack markers, reactive carbonyl derivatives (RCD) and thiobarbituric reactive substances (TBARS). Muscular tissue damage was evaluated by monitoring plasma creatine kinase (CK) and plasma taurine ( Tau) concentrations. Also, we monitored total sulphydryl groups (TSG) and uric acid (UA), and the level of the 70 kDa heat shock protein (HSP70) in leukocytes as a marker of oxidative stress. In the study we found a correspondence between erythrocyte CAT and GR activities and leukocyte HSP70 levels, principally 3 h after the acute exercise, and this suggested an integrated mechanism of antioxidant defense. The increase in levels of plasma Tau was coincident with the increasing plasma levels of CK and TBARS, principally after two hours of exercise. Thus tissue damage occurred before the expression of any anti-oxidant system markers and the monitoring of Tau, CK or TBARS may be important for the estimation of oxidative stress during exhaustive exercise. Furthermore, the integrated analyses could be of value in a clinical setting to quantify the extent of oxidative stress risk and reduce the need to perform muscle biopsies as a tool of clinical evaluation.
Resumo:
The present study evaluated the hepatoprotective effect of an N-acetyl or-methionine + choline chloride + caffeine + thiamine hydrochloride + nicotinamide + pyridoxine hydrochloride compound at doses of 0.2, 0.6 and 1.0 mL/kg of b.w., and the assessment was done by the investigation of serum-enzymatic activity, metabolic functions of the liver and histophatological changes in female Wistar rats, which were subjected to experimental intoxication with CCl4. One hundred and nineteen rats were randomly distributed into 17 groups, performing five different treatments, being evaluated seven animals per treatment in four periods: 2, 4, 6 and 8 days after CCl4-induced intoxication. Treated rats with the hepatoprotective medicine (HM) presented a significant reduction in infiltration of inflammatory cells, steatosis, necrosis and liver congestion when compared to non-treated rats (control). Beside these results, the treatment showed a positive effect on circulatory alterations in the intoxicated animals, with reduction of spleen and renal congestion, as well as, promotion of a significant improvement in ALT, AST, LDH, ALP, GGT enzymatic serum activity reduction and in recovering liver function regarding the metabolism of urea, triglycerides and glucose. These findings indicate therapeutic usefulness of the compound when administered at dose 0.6 and 1.0 mL/kg of b.w. in female Wistar rats. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Obesity is rampant in modern society and growth hormone (GH) could be useful as adjunct therapy to reduce the obesity-induced cardiovascular damage. To investigate GH effects on obesity, initially 32 male Wistar rats were divided into two groups (n = 16): control (C) was fed standard-chow and water and hyper-caloric (H) was fed hypercaloric chow and 30% sucrose in its drinking water. After 45 days, both C and H groups were divided into two subgroups (n = 8): C + PL was fed standard-chow, water and received saline subcutaneously; C + GH was fed standard-chow, water, and received 2 mg/kg/day GH subcutaneously; H + PL was fed hypercaloric diet, 30% sucrose in its drinking water, and received saline subcutaneously; and H + GH was fed hypercaloric diet, 30% sucrose in its drinking water, and received GH subcutaneously. After 75 days of total experimental period, H + PL rats were considered obese, having higher body weight, body mass index, Lee-index, and atherogenic index (AI) compared to C + PL. Obesity was accompanied by enhanced myocardial lipid hydroperoxide (LH) and lactate dehydrogenase (LDH), as well of depressed energy expenditure (RMR) and oxygen consumption(VO(2))/body weight. H + GH rats had higher fasting RMR, as well as lower AI and myocardial LH than H + PL. Comparing C + GH with C + PL, despite no effects on morphometric parameters, lipid profile, myocardial LH, and LDH activity, GH enhanced fed RMR and myocardial pyruvate dehydrogenase. In conclusion, the present study brought new insights into the GH effects on obesity related cardiovascular damage demonstrating, for the first time, that GH regulated cardiac metabolic pathways, enhanced energy expenditure and improved the lipid profile in obesity condition. Growth hormone in standard fed condition also offered promising therapeutic value enhancing pyruvate-dehydrogenase activity and glucose oxidation in cardiac tissue, thus optimizing myocardial energy metabolism.
Resumo:
We imaged pores on the surface of the cell wall of three different industrial strains of Saccharomyces cerevisiae using atomic force microscopy. The pores could be enlarged using 10 mM diamide, an SH residue oxidant that attacks surface proteins. We found that two strains showed signs of oxidative damage via changes in density and diameter of the surface pores. We found that the German strain was resistant to diamide induced oxidative damage, even when the concentration of the oxidant was increased to 50 mM. The normal pore size found on the cell walls of American strains had diameters of about 200nm. Under conditions of oxidative stress the diameters changed to 400nm.This method may prove to be a useful rapid screening process (45-60 min) to determine which strains are oxidative resistant, as well as being able to screen for groups of yeast that are sensitive to oxidative stress. This rapid screening tool may have direct applications in molecular biology (transference of the genes to inside of living cells) and biotechnology (biotransformations reactions to produce chiral synthons in organic chemistry.