231 resultados para OVARIAN FOLLICLES
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective was to determine the relationship among the diameter of ovarian follicles, ovulation rate, and gene expression of the LH receptor (LHR) in Nelore cattle. In Experiment 1, ovulation was synchronized in 53 Nelore cows. Three days after ovulation, ovaries were assessed with ultrasonography, all cows were given 6.25 mg LH im, and they were allocated into three groups, according to diameter of their largest ovarian follicle: G1 (7.0-8.0 mm); G2 (8.1-9.0 mm); and G3 (9.1-10.0 mm). For these three groups, ovulation rates were 9, 36, and 90%, respectively, (P < 0.03; each rate differed significantly from the other two). In Experiment 2, granulosa and theca cells were subjected to total RNA extraction, and gene expression of the LHR was determined by RT-PCR. Follicles were allocated in three groups based on their diameter (similar to the Experiment 1), which were denoted Groups A, B, and C. Expression of the LHR gene in granulosa cells was lower in Group A than Group C (P < 0.05). However, there were no significant differences among groups in expression of the LHR gene in theca cells. We concluded that ovulatory capacity in Nelore cattle was related to increased follicular diameter and expression of the LHR gene in granulosa cells. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Interest in folliculogenesis has grown extensively in recent years. Nevertheless, several aspects of follicular activity are still poorly understood. Thus, in vitro culture of ovarian follicles using new substances has been established as a very viable model, enhancing the prospects for a better understanding of follicular activity. Among the family members of the fibroblast growth factor (FGFs), FGF-10 has received recent attention for its ability to regulate the development of ovarian follicles and oocyte maturation. Given the relevance of FGF-10 in the folliculogenesis process, this review aimed to describe the structural features, expression and the main biological effects of FGF-10 on the development of ovarian follicles in mammals.Review: Along this work, it was shown aspects related to structural characterization of FGF-10 and its receptors, as well as FGF-10 expression in different cell types, emphasizing its importance to follicular development. FGF-10 is a paracrine member of the family of FGFs, and is characterized by promoting biological responses via cell surface receptors (FGFRs) of tyrosine kinase-type. of these receptors, FGFR-1, FGFR-2 and FGFR-3 may undergo alternative transcriptional arrangements, enabling the formation of two isoforms (b and c) that have varying degrees of affinity for the various FGFs. Thus, seven FGFR proteins (FGFRs 1b, 1c, 2b, 2c, 3b, 3c and 4) with different binding specificities are generated from the four FGFR genes. The FGFRs transmit intracellular signals after binding with the ligand through the phosphorylation of tyrosine, which activates various transduction patterns in the cytoplasm. The signal transduction of FGF-10 may occur through three main pathways: protein of rat sarcoma (Ras)/MAPK, PLC gamma/Ca(2+) and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt), which are involved in the transmission of biological signals, leading to cellular proliferation and differentiation. FGF-10 mRNA expression was detected in the ovarian stroma, oocyte and theca cells of preantral and antral follicles. on the other hand, the expression of mRNA for FGF-10 receptors was found in, granulosa cells, theca cells, cumulus cells and oocytes. Although FGFs are widely distributed in different tissues and cell types, the importance and function of FGFs in the ovary are still poorly documented. FGF-10 has been shown to be an important mediator of mesenchymal and epithelial cell interactions during follicle development, promoting follicular survival, activation and growth. Besides the action on folliculogenesis, FGF-10 was recently identified as a growth factor able to improve oocyte competence. However, in antral follicles, the presence of FGF-10 is associated with increased follicular atresia, which matches its anti-estrogenic action.Discussion: From this review, we can conclude that FGF-10 is an important regulator of female reproduction. This growth factor acts in follicle survival, oocyte maturation, expansion of cumulus cells and proliferation of granulosa/theca cellsthrough direct and/or indirect actions in the control of folliculogenesis. Furthermore, FGF-10 seemed to have different effects throughout the follicular development. However, it is necessary to perform additional studies that may provide a better understanding about the importance of FGF-10 during folicullogenesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Insect oocytes are surrounded by the follicular epithelium which is simple and cuboidal, wih the mainly functions of: synthesis of vitellin membrane and chorion and synthesis and transport of hemolymph products (proteins). In Pachycondyla (Neoponera) villosa ants workers aged less than 10 days do not present the formation of ovarian follicles (oocytes, nurse cells and follicular cells) indicating that vitellogenesis starts at approximately 10 days of age. Studies of participation of the follicular epithelium in Pachycondyla (Neoponera) villosa showed that in stage I oocytes the epithelium does not present the opening of intercellular spaces. In stage II these spaces begin to be observed together with separation of the follicular epithelium from the oocyte surface. In stage III two types of material were observed in the intercellular spaces: electrodense material in the basal region and compacted material in apical one as well as follicular epithelium/oocytes interface suggesting that the extraovarian material that reach oocytes undergoes some type of modification during passage through the intercellular spaces. The follicular epithelium spaces in queen are bigger than in workers oocytes.
Resumo:
The reproductive biology of the Brazilian sharpnose shark, Rhizoprionodon lalandii, off southeastern Brazil was investigated using data from gillnet landings. The size-at-maturity for males and females was estimated to be 59 and 62 cm total length (LT), respectively. Ovarian fecundity ranged from 3 to 7 follicles (mean = 4.S4), and uterine fecundity from 1 to S embryos (mean = 3.3). There was a slight positive relationship between female LT and the number of ovarian follicles, but uterine fecundity was not related to female LT. Embryonic growth is fast following fertilization during summer and autumn. Gestation requires 11 - 12 months, and peak parturition is between August and September. A comparison of size-at-maturity between animals from northeastern and southeastern Brazil suggests the existence of at least two stocks of R. lalandii along the Brazilian coast.
Resumo:
Avaliou-se o efeito do diâmetro e da fase do desenvolvimento folicular sobre a competência de oócitos para a produção in vitro de embriões bovinos. A primeira onda folicular foi sincronizada com progestógeno por nove dias e 24 horas após a sua retirada aplicou-se LH. Os ovários foram recuperados 60h (G-60), 96h (G-96) e 108h (G-108) após a ovulação induzida pelo LH. Os folículos foram dissecados ou aspirados e medidos e os oócitos recuperados e submetidos à maturação, fecundação e cultivo in vitro. Os ovários do G-60 apresentaram mais oócitos viáveis (graus I, II e III) (96,6%). A taxa de clivagem teve efeito significativo sobre o diâmetro folicular, sendo maior nos oócitos oriundos de folículos classe 3 (>7mm). Na taxa de produção de blastocisto observou-se interação diâmetro versus fase de desenvolvimento folicular. A taxa de produção de blastocisto foi maior em oócitos obtidos de folículos com diâmetros <5mm (classe 1) no G-60 (64,5%), de 5-7mm (classe 2) no G-96 (33,3%) e >7mm (classe 3) no G-108 (50%). Conclui-se que o diâmetro e a fase de desenvolvimento folicular influenciam a competência oocitária para o desenvolvimento in vitro. Nos estádios iniciais da onda folicular a produção de blastocisto foi maior em oócitos de folículos pequenos; com o avanço da onda, a produção de blastocistos foi maior em oócitos obtidos de folículos maiores.
Resumo:
Os efeitos de prostaglandina (PGF2a) vs CIDR e eCG (gonadotrofina coriônica eqüina) na dinâmica folicular da primeira onda e sua relação com as concentrações plasmáticas de P4 e E2 foram investigadas em ovelhas cíclicas. Foram utilizadas 14 fêmeas ovinas da raça Bergamascia; o Grupo 1 (G1) foi submetido a duas aplicações de PGF2alfa e o Grupo 2 (G2), tratado com CIDR durante 14 dias, sendo que, no momento de sua retirada, administraram-se 500 UI de eCG. A dinâmica folicular ovariana foi monitorada por meio de ultra-som. Monitoraram-se todos os folículos > 2mm e mapeou-se sua posição diariamente, observando-se o desenvolvimento individual de cada folículo. Desde o dia anterior à aplicação da segunda dose de PGF2alfa (G1) e desde a administração de eCG (G2) até o décimo dia do ciclo estral, foram coletadas amostras de sangue para análise de P4 e E2. Houve diferença significativa nas concentrações plasmáticas de P4 e E2 entre os tratamentos. A sincronização de estro e ovulação, utilizando CIDR + 500 UI de eCG, incrementou a quantidade de folículos recrutados, além de aumentar o diâmetro máximo e a taxa de crescimento dos folículos grandes na primeira onda folicular.
Resumo:
In Neoponera villosa ants, we found ovaries of the polytrophic meroistic type which is characterized by the presence of nurse cells forming together with the oocyte, the so-called follicles. The nurse cells have the primary function of supplying the oocyte with RNA, but they contribute to the supply of other elements such as glycogen. With the objetive of detecting the presence of this substance in the ovarioles of workers and queens of N.villosa ante the ovaries were removed and processed according to electron microscopy technic for glycogen detection. Glycogen is a common element in insect oocytes and is abundantly distributed in the cytoplasm of N.villosa workers and queens. However, in ovarian follicles it can only be detected at stages ET and lit of development. Glycogen synthesis probably occurs predominantly in nurse cells which transfer it into the oocyte through the nourish pore. This process requires high energy expenditure that justify the large numbers of mitochondria associated with glycogen in the nurse cell cytoplasm. The amount of glycogen in the nurse cells of queens is slightly greater than workers.
Resumo:
Los efectos de la prostaglandina (PGF2α) vs CIDR y eCG (gonadotrofina coriónica equina) en la dinámica de la población folicular y su relación con las concentraciones plasmáticas de P4 fueron investigadas en ovejas cíclicas. Fueron utilizadas 14 hembras ovinas de la raza Bergamascia; el Grupo 1 (Gl) se sometió a dos aplicaciones de PGF2α, y, el Grupo 2 (G2) tratado con CIDR durante 14 días siendo que, en el momento de su retirada, se administraron 500 UI de eCG. La dinámica folicular ovárica fue monitoreada por medio de ecógrafo. Se monitorearon todos los folículos ≥ mm y se gráfico su posición diariamente, observándose el desarrollo individual folicular. Desde el día anterior a la aplicación de la segunda dosis de PGF2α, (Gl) y desde la administración de eCG (G2) hasta el décimo día del ciclo estral se colectaron muestras de sangre para el análisis de P4. Hubo diferencia significativa (P<0,001) en las concentraciones plasmáticas de P4 entre los tratamientos. La sincronización del estro y ovulación utilizando CIDR + 500 UI de eCG, incrementó la cantidad de folículos reclutados, además de aumentar el diámetro máximo y la tasa de crecimiento de los folículos grandes en la primera onda folicular. En consideración a los resultados se puede concluir que la sincronización del estro y de la ovulación en hembras ovinas, utilizando el CIDR y 500 UI de eCG, incrementa la cantidad de folículos reclutados, además de aumentar el diámetro máximo y la tasa de crecimiento de los folículos grandes. La asociación CIDR+500 UI de eCG provoca aumentos significativos en las concentraciones plasmáticas de progesterona (P4) al inicio de la fase luteal en hembras ovinas.
Resumo:
In Neoponera villosa ants, we found ovaries of the polytrophic meroistic type which is characterized by the presence of nurse cells forming together with the oocyte, the so-called follicles. The nurse cells have the primary function of supplying the oocyte with RNA, but they contribute to the supply of other elements such as glycogen. With the objetive of detecting the presence of this substance in the ovarioles of workers and queens of N. viillosa ants the ovaries were removed and processed according to electron microscopy technic for glycogen detection. Glycogen is a common element in insect oocytes and is abundantly distributed in the cytoplasm of N. villosa workers and queens. However, in ovarian follicles it can only be detected at stages II and III of development. Glycogen synthesis probably occurs predominantly in nurse cells which transfer it into the oocyte through the nourish pore. This process requires high energy expenditure that justify the large numbers of mitochondria associated with glycogen in the nurse cell cytoplasm. The amount of glycogen in the nurse cells of queens is slightly greater than workers.
Resumo:
The present results show that in the ovarioles of a newly emerged (0 day) queen of A. mellifera only two regions may be distinguished: a proximal, short germarium and a very long distal, terminal filament. As the queen matures and gets ready for the nupcial flight, the germarium increases in lenght, advancing towered the distal end, as the terminal filament shortens. The ovarioles of queens ready to mate (6 to 8 days old) have, already one or two ovarian follicles, i.e. a very short proximal vitellarium, but a real vitellogenesis only starts after the fecundation. If the queen does not mate the ovarioles structure is disrupted (12-16 days old). In mated queen eggs the ovarioles present three differentiated regions, from the apice to the basis: a short terminal filament, a medium size germarium, and a very long basal vitellarium. As the eggs are laid, the emptied follicle collapses, degenerates and produces a corpus luteum.
Resumo:
Elevated blood testosterone concentrations, often accompanied by male-typical behaviors, is a common signalment of mares with granulosa-theca cell tumors (GCTCs), but no definitive information exists regarding the cellular differentiation of tumors associated with androgen secretion. This study was conducted to localize and thereby define the cellular expression of 17α-hydroxylase/17,20-lyase cytochrome P450 (P450c17), the enzyme most directly responsible for androgen synthesis, in 30 GTCTs and control tissues (gonads and adrenal glands) using immuno-histochemistry (IHC). Immuno-reactivity for P450c17 was evident in approximately half of 30 specimens examined, was most consistent in the interstitial cells surrounding existing or developing cysts, and was less intense in cells within cysts in the smaller proportion of specimens where this was observed. In control tissues, the expression of P450c17 was localized primarily in theca interna of normal ovarian follicles, in theca-lutein cells of some corpora lutea, but not in granulosa-lutein cells. Testicular interstitial cells and islands of adreno-cortical cells located in the adrenal medulla of the adrenal cortex further established the specificity of the antisera used. These data provided the first substantive evidence that polyhedral cells identified previously in GTCTs by histopathology have the potential to synthesize and secrete androgens, similar to theca interna and theca lutein cells in normal equine ovaries. © 2010 Elsevier Inc.
Resumo:
Background: Although there is some information in the literature discussing differences of the estrous cycle of Bos taurus and Bos indicus cattle, most of the data derive from studies performed in temperate climate countries, under environmental and nutritional conditions very different than those found in tropical countries. Moreover, the physiological basis for understanding the differences between Bos taurus and Bos indicus estrous cycles are still unknown. This review explores the physiological and metabolic bases for understanding the key differences between the Bos taurus and Bos indicus estrous cycle. Moreover, it presents recent results of studies that have directly compared reproductive variables between Zebu and European cattle. Review: The knowledge of reproductive physiology, especially the differences between Bos taurus and Bos indicus, is important for the development and application of different techniques of reproductive management in cattle. In this regard, overall, Bos indicus have a greater number of small ovarian follicles and ovulatory follicles are smaller as compared to Bos taurus. Consequently, Zebu cattle also have smaller corpus luteum (CL). Nevertheless, circulating concentrations of steroid and metabolic hormones are not necessarily higher in European cattle. In fact, some studies have shown that despite ovulating smaller follicles and having smaller CL, Bos indicus cows or heifers have higher circulating concentrations of estradiol, progesterone, insulin and IGF-I compared to Bos taurus females. In addition, there are also substantial differences between Bos indicus and Bos taurus cattle in relation to follicle size at the time of selection of the dominant follicle. Conclusion: Data from very recent studies performed in Brazil have corroborated results from previous reports that have observed substantial differences in the estrous cycle variables of Bos indicus versus Bos taurus cattle. Those differences are probably related to distinct metabolism and metabolic hormone concentrations between Zebu and European cattle. This increased knowledge will allow for the establishment of more adequate reproductive management protocols in both breeds of cattle.
Resumo:
The yolk protein precursor, vitellogenin (Vg), in bees is synthesized in the fat body trophocytes, delivered to the hemolymph and ultimately absorbed from there during the vitellogenic phase of oocytes in the active ovary. The routes tracing the material exchange that occurs between the trophocytes and the hemolymph, in addition to the transportation from the hemolymph to the ovarian follicles, were marked by alkaline phosphatase and lanthanum nitrate (LN). Active ovaries from nurse workers and physogastric queens, as well as inactive ovaries of virgin queens, were examined by transmission electron microscopy. The LN permitted better visualization of the routes of exchanges between the organs and the hemolymph. Both methods demonstrate the apparent differences between the phases of the ovary and the bee caste. In inactive ovaries of the virgin queens, the routes from the follicular epithelium to the oocyte remain closed; conversely, they are open in active ovaries of the nurse workers and physogastric queens. The differences between the methods and classes of bees are discussed. © The Author 2013. Published by Oxford University Press [on behalf of The Japanese Society of Microscopy]. All rights reserved.