48 resultados para ORGANOLANTHANIDE CHEMISTRY
Resumo:
This work describes the new improvements of the SISTEMAT project, one system for structural elucidation mainly in the field of Natural Products Chemistry. Some examples of the resolution of problems using C-13 Nuclear Magnetic Resonance and Mass Spectroscopy are given. Programs to discover new heuristic rules for structure generation are discussed. The data base contains about 10000 C-13 NMR spectra.
Resumo:
After thirty two years in Brazil and retired from Universidade Estadual de Campinas the author wishes to present this account, a summary of a large part of the research in synthetic methodology developed by the research groups of Albert J. Kascheres and the author at Universidade Estadual de Campinas Chemistry Institute. Contributions have been made to the area of enaminones, diazocarbonyls, cyclopropenones and azirines.
Resumo:
The present study shows how nature combined a small number of chemical building blocks to synthesize the acylpolyamine toxins in the venoms of Nephilinae orb-web spiders. Considering these structures in four parts, it was possible to rationalize a way to represent the natural combinatorial chemistry involved in the synthesis of these toxins: an aromatic moiety is connected through a linker amino acid to a polyamine chain, which in turn may be connected to an optional tail. The polyamine chains were classified into seven subtypes (from A to G) depending on the way the small chemical blocks are combined. These polyamine chains may be connected to one of the three possible chromophore moieties: 2,4-dihydroxyphenyl acetic acid, or 4-hydroxyindole acetic acid, or even with the indole acetic group. The connectivity between the aryl moiety and the polyamine chain is usually made through an asparagine residue; optionally a tail may be attached to the polyamine chain; nine different types of tails were identified among the 72 known acylpolyamine toxin structures. The combinations of three chromophores, two types of amino acid linkers, seven sub-types of polyamine backbone, and nine options of tails results in 378 different structural possibilities. However, we detected only 91 different toxin structures, which may represent the most successful structural trials in terms of efficiency of prey paralysis/death.
Resumo:
In order to determine the effect of maternal exercise on maternal nutritional status and fetal growth, young (Y = 45-50 days old) Wistar rats were divided into 4 groups of 5 to 8 animals: control pregnant (CP), control non-pregnant (CNP), exercise-trained (swimming 1 h/day, 5 days/week, for 19 days) pregnant (TP) and exercise-trained non-pregnant (TNP). Four equivalent groups of adult rats (A - 90-100 days old) were also formed. Serum glucose, total protein, albumin, hematocrit and liver glycogen were determined in female rats and pups. There were no statistical differences in serum glucose, total protein and albumin levels, litter size ot birth weight among exercise-trained animals, controls and their respective pups. Hematocrit was significantly lower in pups of exercise-trained young rats than in all other groups (YCP = 38.6 +/- 3.0; YTP = 32.6 +/- 2.1; ACP = 39.0 +/- 2.5; ATP = 39.2 +/- 2.9%). Liver glycogen levels were lower in pregnant than in non-pregnant rats but similar in exercise-trained and control rats of the same age and physiological status (YCNP = 4.1 +/- 0.2; YCP = 2.7 +/- 0.9; YTNP = 4.9 +/- 0.8; YTP = 2.7 +/-0.4; ACNP = 6.1 +/- 0.6; ACP = 3.1 +/- 0.8; ATNP = 6.6 +/- 0.8; ATP = 2.2 +/- 0.9 mg/100 mg). We conclude that pups of adult female rats are spared from the effects of this kind of exercise training during pregnancy. on the other hand, it appears that maternal adaptations to exercise training in young rats are able to preserve only some aspects of pup metabolism.
Resumo:
Experimental data on the precipitation chemistry in the semi-arid savanna of South Africa is presented in this paper. A total of 901 rainwater samples were collected with automatic wet-only samplers at a rural site, Louis Trichardt, and at an industrial site, Amersfoort, from July 1986 to June 1999. The chemical composition of precipitation was analysed for seven inorganic and two organic ions, using ion chromatography. The most abundant ion was SO(4)(2-) and a large proportion of the precipitation is acidic, with 98% of samples at Amersfoort and 94% at Louis Trichardt having a pH below 5.6 ( average pH of 4.4 and 4.9, respectively). This acidity results from a mixture of mineral and organic acids, with mineral acids being the primary contributors to the precipitation acidity in Amersfoort, while at Louis Trichardt, organic and mineral acids contribute equal amounts of acidity. It was found that the composition of rainwater is controlled by five sources: marine, terrigenous, nitrogenous, biomass burning and anthropogenic sources. The relative contributions of these sources at the two sites were calculated. Anthropogenic sources dominate at Amersfoort and biomass burning at Louis Trichardt. Most ions exhibit a seasonal pattern at Louis Trichardt, with the highest concentrations occurring during the austral spring as a result of agricultural activities and biomass combustion, while at Amersfoort it is less pronounced due to the dominance of relatively constant industrial emissions. The results are compared to observations from other African regions.
Resumo:
The molar single activity coefficients associated with propionate ion (Pr) have been determined at 25 degrees C and ionic strengths comprised between 0.300 and 3.00 M, adjusted with NaClO4, as background electrolyte. The investigation was carried out potentiometrically by using a second class Hg/Hg2Pr2 electrode. It was found that the dependence of propionate activity coefficients as a function of ionic strength (I) can be assessed through the following empirical equation: log y(Pr) = -0.185 I-3/2 + 0.104 I-2. Next, simple equations relating stoichiometric protonation constants of several monocarboxylates and formation constants associated with 1:1 complexes involving some bivalent cations and selected monocarboxylates, in aqueous solution, at 25 degrees C, as a function of ionic strength were derived, allowing the interconversion of parameters from one ionic strength to another, up to I = 3.00 M. In addition, thermodynamic formation constants as well as parameters associated with activity coefficients of the complex species in the equilibria are estimated. The body of results shows that the proposed calculation procedure is very consistent with critically selected experimental data.
Resumo:
The chemical composition, as well as the sources contributing to rainwater chemistry have been determined at Skukuza, in the Kruger National Park, South Africa. Major inorganic and organic ions were determined in 93 rainwater samples collected using an automated wet-only sampler from July 1999 to June 2002. The results indicate that the rain is acidic and the averaged precipitation pH was 4.72. This acidity results from a mixture of mineral acids (82%, of which 50% is H2SO4) and organic acids (18%). Most of the H2SO4 component can be attributed to the emissions of sulphur dioxide from the industrial region on the Highveld. The wet deposition of S and N is 5.9 kgS.ha(-1).yr(-1) and 2.8 kgN.ha(-1).yr(-1), respectively. The N deposition was mainly in the form of NH4+. Terrigenous, sea salt component, nitrogenous and anthropogenic pollutants have been identified as potential sources of chemical components in rainwater. The results are compared to observations from other African regions.
Resumo:
The chemistry of members of the family Piperaceae is of great interest owing to the variety of biological properties displayed. A survey of structural diversity and bioactivity reveals that groups of species specialize in the production of amides, phenylpropanoids, lignans and neolignans, benzoic acids and chromenes, alkaloids, polyketides, and a plethora of compounds of mixed biosynthetic origin. Bioassays against Cladosporium cladosporioides and C. sphaerospermun have resulted in the characterization of various amides, prenylated phenolic compounds, and polyketides as potential classes of antifungal agents. Studies on the developmental process in seedlings of Piper solmsianum have shown that phenylpropanoid are produced instead of the tetrahydrofuran lignans found in adult plants. In suspension cultures of P. cernuum and P crassinervium, phenylethylamines and alkamides predominate, whereas in the adult plants prenylpropanoids and prenylated benzoic acids are the respective major compound classes. Knowledge of the chemistry, bioactivity, and ecology of Piperaceae species provides preliminary clues for an overall interpretation of the possible role and occurrence of major classes of compounds.
Resumo:
The stable free radical 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (TOAC) is the only spin labeled amino acid that has been used to date to successfully label peptide sequences for structural studies. However, severe difficulty in coupling the subsequent amino acid has been the most serious shortcoming of this paramagnetic marker. This problem stems from the low nucleophilicity of TOAC's amine group towards the acylation reaction during peptide chain elongation. The present report introduces the alternative beta -amino acid 2,2,5,5-tetramethylpyrrolidine-N-oxyl-3-amino-4-carboxylic acid (POAC), potentially useful in peptide and protein chemistry. Investigations aimed at addressing the stereochemistry of this cyclic molecule through X-ray diffraction measurements of crystalline and bulk samples revealed that it consists only of the trans conformer. The 9-fluorenylmethyloxyearbonyl group (Fmoc) was chosen for temporary protection of the POAC amine function, allowing insertion of the probe at any position in a peptide sequence. The vasoactive octapeptide angiotensin II (AII, DRVYIHPF) was synthesized by replacing Pro(7) with POAC. The reaction of Fmoc-POAC with the peptidyl-resin occurred smoothly, and the coupling of the subsequent amino acid showed a much faster reaction when compared with TOAC. POAC(7)-AII was obtained in good yield, demonstrating that, in addition to TOAC, POAC is a convenient amino acid for the synthesis of spin labeled peptide analogues. The present findings open the possibility of a wide range of chemical and biological applications for this novel beta -amino acid derivative, including structural investigations involving its differentiated bend-inducing characteristics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The measurement of nitrogen dioxide at the parts-perbillion level is described. The experimental arrangement consists of two optical fibers placed on opposite sides of and in contact with a liquid film (14-57 μL in volume) supported on a U-shaped wire guide and two tubular conduits (one of which constitutes the means for the delivery of the liquid), light from a green (555 nm) light-emitting diode enters the liquid film, composed of Griess-Saltzman reagent. The transmitted light is measured by a referenced photodetection arrangement. Sample gas flows past the droplet at a low flow rate (typically 0.10-0.25 L/min). The response is proportional to the sampling period and the analyte concentration. The limit of detection for this nonoptimized arrangement is estimated to be <10 ppb by volume for a 5 min sample. Some unusual characteristics are observed. The initial absorbance, when most of the analyte/reaction product is still near the surface, is higher than that when the content of the droplet is fully mixed. The signal depends on the sample flow rate in a nonmonotonic fashion, first increasing and then decreasing with increasing sampling rate; the specific chemistry involved in the collection and determination of NO2 may be responsible.
Resumo:
Chemical analyses for biotites and their host rocks from the Cabreúva (three facies) and Salto (five facies) intrusions from the multiple-centered rapakivi Itu Complex, State of São Paulo, Brazil, are presented and compared. The Cabreúva intrusion comprises different kinds of mainly even-grained biotite and hornblende-bearing syenogranites, monzogranites and quartz syenites and the Salto intrusion several types of mainly porphyritic biotite syenogranites, some of them hornblende-bearing. The biotites from the Salto intrusion (S-micas) show a more restricted composition than those from the Cabreúva intrusion (C-micas). This reflects the chemical variability of the two bodies which is smaller in the Salto intrusion and larger in the Cabreúva pluton. In the AlIV x Fet/(Fet+Mg) diagram the S- and C-micas show similar AlIV contents, around 2.2-2.3, but C-micas have higher Fet/(Fet+Mg) ratios (0.7-0.9) compared to those of S-micas (0.5-0.6). In the Mg:(Al+Fe+3+Ti):(Fe+2+Mn) diagram the S-micas are defined as Fe+2-biotites and the C-micas occupy the area between the Fe+2-biotites and the siderophyllite/lepidomelane fields, slightly overlapping the latter. In the Al2O3 × FeOt, MgO × FeOt, Al2O3 x MgO and Alt x Mg diagrams, the S-micas always lie on the calc-alkaline/alkaline boundary (or in the subalkaline field) whereas the C-micas systematically plot in the alkaline field, reflecting the higher alkalis content of the Cabreúva intrusion. In the Fet/(Fet+Mg) x SiO2 diagram, the S-micas lie on a smooth line whereas the C-micas from the different facies are separated by distinct chemical gaps reflecting the major or minor chemical overlapping of the facies from the Salto and Cabreúva intrusions.
Resumo:
This paper presents optical and electrical measurements on plasma generated by DC excited glow discharges in mixtures composed of 95% N2, 4.8% CH4 and 0.2% H2O at pressures varying from 1.064 mbar to 4.0 mbar. The discharges simulate the chemical reactions that may occur in Titan's atmosphere in the presence of meteorites and ice debris coming from Saturn's systems, assisted by cosmic rays and high energy charged particles. The results obtained from actinometric optical emission spectroscopy, combined with the results from a pulsed Langmuir probe, show that chemical species CH, CN, NH and OH are important precursors in the synthesis of the final solid products and that the chemical kinetics is essentially driven by electronic collision processes. It is shown that the presence of water is sufficient to produce complex solid products whose components are important in prebiotic compound synthesis. © 1998 Elsevier Science Ltd. All rights reserved.