32 resultados para Noyau paraventriculaire (PVN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the effects of losartan (40 nmol) and PD 123319 (40 nmol) (both non-peptides and selective antagonists of the AT1 and AT2 angiotensin receptors, respectively), and [Sar¹, Ala8] angiotensin II (ANG II) (40 nmol) (a non-selective peptide antagonist of angiotensin receptors) injected into the paraventricular nucleus (PVN) on the water and salt appetite, diuresis and natriuresis and mean arterial pressure (MAP) induced by administration of 10 nmol of ANG II into the medial septal area (MSA) of male Holtzman rats weighing 250-300 g. The volume of drug solution injected was 0.5 µl over a period of 10-15 s. The responses were measured over a period of 120 min. ANG II alone injected into the MSA induced an increase in all the above parameters (8.1 ± 1.2, 1.8 ± 0.3, and 17.1 ± 1.0 ml, 217 ± 25 µEq/120 min, and 24 ± 4 mmHg, respectively, N = 10-12) compared with vehicle-treated rats (1.4 ± 0.2, 0.6 ± 0.1, and 9.3 ± 0.5 ml, 47 ± 5 µEq/120 min, and 4.1 ± 0.8 mmHg, respectively, N = 10-14). Pretreatment with losartan and [Sar¹, Ala8] ANG II completely abolished the water and sodium intake, and the pressor increase (0.5 ± 0.2, 1.1 ± 0.2, 0.5 ± 0.2, and 0.8 ± 0.2 ml, and 1.2 ± 3.9, 31 ± 4.6 mmHg, respectively, N = 9-12), whereas losartan blunted the urinary and sodium excretion induced by ANG II (13.9 ± 1.0 ml and 187 ± 10 µEq/120 min, respectively, N = 9). Pretreatment with PD 123319 and [Sar¹, Ala8] ANG II blocked the urinary and sodium excretion (10.7 ± 0.8, 9.8 ± 0.7 ml, and 67 ± 13 and 57 ± 17 µEq/120 min, respectively, N = 9), whereas pretreatment with PD 123319 partially blocked the water and sodium intake, and the MAP induced by ANG II administration (2.3 ± 0.3, 1.1 ± 0.1 ml, and 12 ± 3 mmHg, respectively, N = 9-10). These results suggest the angiotensinergic effect of the MSA on the AT1 and AT2 receptors of the PVN in terms of water and sodium homeostasis and MAP modulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the effects of DuP753 and PD123319 (both nonpeptides and selective antagonists of the AT(1) and AT(2) angiotensin receptors, respectively), and [Sar(1), Ala(8)]ANG II (a non-selective peptide antagonist of angiotensin receptors) on water and 3%NaCl intake induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of sodium-depleted Holtzman rats weighing 250-300 g. Twenty hours before the experiments, the rats were depleted of sodium using furosemide (10 ng/rat, sc). The volume of drug solution injected was 0.5 mu l over a period of 10-15 sec. Water and sodium intake were measured at 0.25, 0.5, 1.0 and 2.0 h. Pre-treatment with DuP753 (14 rats) at a dose of 60 ng completely abolished the water intake induced by injection of 12 ng of ANG II (15 rats) (6.4 +/- 0.6 vs 1.4 +/- 0.3 ml/2 h), where [Sar(1), Ala(8)]ANG II (12 rats) and PD123319 (10 rats) at the doses of 60 ng partially blocked water intake (6.4 +/- 0.6 vs 2.9 +/- 0.5 and 2.7 +/- 0.2 ml/2 h, respectively). In the same animals, [Sar(1), Ala(8)]ANG II, DuP753, and PD123319 blocked the sodium intake induced by ANG II (9.2 +/- 1.6 vs 3.3 +/- 0.6, 1.8 +/- 0.3, and 1.4 +/- 0.2 ml/2 h, respectively). These results indicate that both DuP753 and PD123319, administered into the PVN, blocked the water and sodium intake induced by administration of ANG II into the same site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the effects of losartan and CGP42112A (selective ligands of the AT1 and AT2 angiotensin receptors, respectively) and salarasin (a relatively nonselective angiotensin receptor antagonist) on urinary volume and urinary sodium and potassium excretion induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of conscious rats. Both the AT1 and AT2 ligands and salarasin administered in the presence of ANG II elicited a concentration-dependent inhibition of urine excretion, but losartan inhibited only 75% of this response. The IC50 for salarasin, CGP42112A, and losartan was 0.01, 0.05, and 6 nM, respectively. Previous treatment with saralasin, CGP42112A and losartan competitively antagonized the natriuretic responses to PVN administration of ANG II, and the IC50 values were 0.09, 0.48, and 10 nM, respectively. The maximum response to losartan was 65% of that obtained with saralasin. Pretreatment with saralasin, losartan, and CGP42112A injected into the PVN caused shifts to the right of the concentration-response curves, but the losartan concentrations were disproportionately greater compared with salarasin or CGP42112A. The IC50 values were 0.06, 0.5, and 7.0 for salarasin, CGP42112A, and losartan, respectively. These results suggest that both AT1 and AT2 receptor subtypes in the PVN are involved in ANG II-related urine, sodium, and potassium excretion, and that the inhibitory responses to AT2 blockade are predominant. Copyright (C) 1999 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to analyse the haemodynamic effects induced by the hypothalamic disconnection (HD) caudal or rostral to the paraventricular nucleus of the hypothalamus (PVN). Mean arterial pressure (MAP), hindlimb, renal and mesenteric blood flow and vascular conductance (HVC, RVC and MVC, respectively) were measured in urethane (1.2 g/kg, i.v.) anesthetized rats for 60 min after disconnection. HD caudal to the PVN was performed with a double-edged microknife of bayonet shape (R=1 mm, H=2 mm) stereotaxically placed, lowered 2.8 mm caudal to the bregma along the midline. The cut was achieved by rotating the microknife 90° right and 90° left. HD rostral to the PVN was performed with the knife placed 0.8 mm caudal to the bregma. Thirty minutes after the hypothalamic disconnection caudal (HD-C), a decrease in MAP was observed (-14±3 mm Hg), reaching a 60-min decrease of 30±3 mm Hg. Hindlimb conductance increased 10 min after HD (156±14%) and remained elevated throughout the experimental period. On the contrary, we observed a transitory renal vasoconstriction (82±9%, ≤20 min) and a late mesenteric vasodilation, starting at 30 min (108±4%) and reaching 138±6% at 60 min. In rats with HD rostral to the PVN, we only observed minor changes in the cardiovascular parameters. In the MAP, there was a slight decrease 60 min after the hypothalamic disconnection rostral (HD-R) (-9±4 mm Hg). There were no significant changes in HVC. RVC and MVC were increased 60 min after the HD-R (116±12% and 124±11%, respectively). These results suggest that vasodilation in the hindlimb and in the mesenteric bed could contribute to the observed decrease in MAP in HD caudal to PVN rats. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective - We determined the effects of losartan and PD 123319 (antagonists of the AT1 and AT2 angiotensin receptors, respectively), and [Sar1, Ala8] ANG II (a relatively peptide antagonist of angiotensin receptors) injected into the paraventricular nucleus (PVN) on water and 3% NaCl intake, and the diuretic, natriuretic, and pressor effects induced by administration of angiotensin II (ANG II) into the medial septal area (MSA) of conscious rats. Methods - Holtzman rats were used. Animals were anesthetized with tribromoethanol (20 mg) per 100 grams of body weight, ip. A stainless steel guide cannula was implanted into the MSA and PVN. All drugs were injected in 0.5-μl volumes for 10-15 seconds. Seven days after brain surgery, water and 3% NaCl intake, urine and sodium excretion, and arterial blood pressure were measured. Results - Losartan (40 nmol) and [Sar1, Ala8] ANG II (40 nmol) completely eliminated whereas PD 123319 (40 nmol) partially blocked the increase in water and sodium intake and the increase in arterial blood pressure induced by ANG II (10 nmol) injected into the MSA. The PVN administration of PD 123319 and [Sar1, Ala8] ANG II blocked whereas losartan attenuated the diuresis and natriuresis induced by MSA administration of ANG II. Conclusion - MSA involvement with PVN on water and sodium homeostasis and arterial pressure modulation utilizing ANGII receptors is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, the involvement of paraventricular nucleus of the hypothalamus (PVN) glutamate receptors in the modulation of autonomic (arterial blood pressure, heart rate and tail skin temperature) and neuroendocrine (plasma corticosterone) responses and behavioral consequences evoked by the acute restraint stress in rats was investigated. The bilateral microinjection of the selective non-NMDA glutamate receptor antagonist NBQX (2 nmol/ 100 nL) into the PVN reduced the arterial pressure increase as well as the fall in the tail cutaneous temperature induced by the restraint stress, without affecting the stress-induced tachycardiac response. On the other hand, the pretreatment of the PVN with the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) was able to increase the stress-evoked pressor and tachycardiac response, without affecting the fall in the cutaneous tail temperature. The treatment of the PVN with LY235959 also reduced the increase in plasma corticosterone levels during stress and inhibited the anxiogenic-like effect observed in the elevated plus-maze 24 h after the restraint session. The present results show that NMDA and non-NMDA receptors in the PVN differently modulate responses associated to stress. The PVN glutamate neurotransmission, via non-NMDA receptors, has a facilitatory influence on stress-evoked autonomic responses. On the other hand, the present data point to an inhibitory role of PVN NMDA receptors on the cardiovascular responses to stress. Moreover, our findings also indicate an involvement of PVN NMDA glutamate receptors in the mediation of the plasma corticosterone response as well as in the delayed emotional consequences induced by the restraint stress. © 2012 Elsevier B.V. and ECNP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic exercise evokes sustained cardiovascular responses, which are characterized by arterial pressure and heart rate increases. Although it is well accepted that there is central nervous system mediation of cardiovascular adjustments during exercise, information on the role of neural pathways and signaling mechanisms is limited. It has been reported that glutamate, by acting on NMDA receptors, evokes the release of nitric oxide through activation of neuronal nitric oxide synthase (nNOS) in the brain. In the present study, we tested the hypothesis that NMDA receptors and nNOS are involved in cardiovascular responses evoked by an acute bout of exercise on a rodent treadmill. Moreover, we investigated possible central sites mediating control of responses to exercise through the NMDA receptor-nitric oxide pathway. Intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK-801) reduced both the arterial pressure and heart rate increase evoked by dynamic exercise. Intraperitoneal treatment with the preferential nNOS inhibitor 7-nitroindazole reduced exercise-evoked tachycardiac response without affecting the pressor response. Moreover, treadmill running increased NO formation in the medial prefrontal cortex (MPFC), bed nucleus of the stria teminalis (BNST) and periaqueductal gray (PAG), and this effect was inhibited by systemic pretreatment with MK-801. Our findings demonstrate that NMDA receptors and nNOS mediate the tachycardiac response to dynamic exercise, possibly through an NMDA receptor-NO signaling mechanism. However, NMDA receptors, but not nNOS, mediate the exercise-evoked pressor response. The present results also provide evidence that MPFC, BNST and PAG may modulate physiological adjustments during dynamic exercise through NMDA receptor-NO signaling. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleus of the solitary tract (NTS) is the primary site of visceral afferents to the central nervous system. In the present study, we investigated the effects of lesions in the commissural portion of the NTS (commNTS) on the activity of vasopressinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, plasma vasopressin, arterial pressure, water intake, and sodium excretion in rats with plasma hyperosmolality produced by intragastric 2 M NaCl (2 ml/rat). Male Holtzman rats with 15-20 days of sham or electrolytic lesion (1 mA; 10 s) of the commNTS were used. CommNTS lesions enhanced a 2 M NaCl intragastrically induced increase in the number of vasopressinergic neurons expressing c-Fos in the PVN (28 ± 1, vs. sham: 22 ± 2 c-Fos/AVP cells) and SON (26 ± 4, vs. sham: 11 ± 1 c-Fos/AVP cells), plasma vasopressin levels (21 ± 8, vs. sham: 6.6 ± 1.3 pg/ml), pressor responses (25 ± 7 mmHg, vs. sham: 7 ± 2 mmHg), water intake (17.5 ± 0.8, vs. sham: 11.2 ± 1.8 ml/2 h), and natriuresis (4.9 ± 0.8, vs. sham: 1.4 ± 0.3 meq/1 h). The pretreatment with vasopressin antagonist abolished the pressor response to intragastric 2 M NaCl in commNTS-lesioned rats (8 ± 2.4 mmHg at 10 min), suggesting that this response is dependent on vasopressin secretion. The results suggest that inhibitory mechanisms dependent on commNTS act to limit or counterbalance behavioral, hormonal, cardiovascular, and renal responses to an acute increase in plasma osmolality. © 2013 the American Physiological Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholinergic activation of the medial septal area (MSA) with carbachol produces thirst, natriuresis, antidiuresis and pressor response. In the brain, hydrogen peroxide (H2O2) modulates autonomic and behavioral responses. In the present study, we investigated the effects of the combination of carbachol and H2O2 injected into the MSA on water intake, renal excretion, cardiovascular responses and the activity of vasopressinergic and oxytocinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Furthermore, the possible modulation of carbachol responses by H2O2 acting through K+ATP channels was also investigated. Male Holtzman rats (280–320 g) with stainless steel cannulas implanted in the MSA were used. The pre-treatment with H2O2 in the MSA reduced carbachol-induced thirst (7.9 ± 1.0, vs. carbachol: 13.2 ± 2.0 ml/60 min), antidiuresis (9.6 ± 0.5, vs. carbachol: 7.0 ± 0.8 ml/120 min,), natriuresis (385 ± 36, vs. carbachol: 528 ± 46 μEq/120 min) and pressor response (33 ± 5, vs. carbachol: 47 ± 3 mmHg). Combining H2O2 and carbachol into the MSA also reduced the number of vasopressinergic neurons expressing c-Fos in the PVN (46.4 ± 11.2, vs. carbachol: 98.5 ± 5.9 c-Fos/AVP cells) and oxytocinergic neurons expressing c-Fos in the PVN (38.5 ± 16.1, vs. carbachol: 75.1 ± 8.5 c-Fos/OT cells) and in the SON (57.8 ± 10.2, vs. carbachol: 102.7 ± 7.4 c-Fos/OT cells). Glibenclamide (K+ATP channel blocker) into the MSA partially reversed H2O2 inhibitory responses. These results suggest that H2O2 acting through K+ATP channels in the MSA attenuates responses induced by cholinergic activation in the same area.