43 resultados para Nonlinear optical
Resumo:
We report on the fabrication of novel lead-germanate glasses and fibers. We have characterized these glasses in terms of their thermal properties, Raman spectra and refractive indices (both linear and nonlinear) and present them as viable alternatives to tellurite glasses for applications requiring highly nonlinear optical fibers. © 2013 Optical Society of America.
Resumo:
A side-chain methacrylate copolymer functionalized with the nonlinear optical chromophore 4-[N-ethyl-N-(2-hydroxyethyl)]amino-2'-chloro-4'-nitroazobenzene, disperse red-13, was prepared and characterized. The chromophore relaxation was investigated measuring the decay of the electrooptic coefficient r(13) and the complex dielectric constant at different temperatures. Results obtained below and above T-g were analyzed using the Kohlrausch-Williams-Watts(KWW) equation, through the study of the temperature dependence of the KWW parameters. Above T-g the relaxation time experimental data were fitted to the Williams-Landel-Ferry (WLF) equation and its parameters determined. Chromophore relaxation leading to the decrease of electrooptic properties was found associated with a primary alpha relaxation. The obtained WLF equation parameters were introduced into the Adam-Gibbs-Tool-Narayanaswamy-Moynihan equation, and the overall relaxation time temperature dependence was successfully obtained in terms of the fictive temperature, accounting for the sample thermal treatment and allowing optimized thermal treatment to be found. The copolymer KWW stretching parameter at the glass transition temperature lies close to the limit value for short-range interactions, i.e., 0.6, suggesting that the chromophore group is participating in primary a relaxation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The ferroelectric and the dielectric behaviors of binary blends formed by an equi-molar Poly(vinylidene fluoride trifluoroethylene) copolymer [P(VDF-TrFE)] and Poly(methyl methacrylate) [PMMA] were investigated, for several PMMA compositions. For 40 wt.% or more PMMA contents, the blends are completely amorphous. Below this value, they crystallize in the usual Cm2m polar structure of P(VDF-TrFE). The ferroelectric switching characteristics and the dielectric response of the blends demonstrate the formation of dynamically stable ferroelectric domains. Moreover, the blended films are highly transparent in the optical region. Therefore, thin films of these binary blends are good candidates as host materials for nonlinear optical applications.
Resumo:
The methacrylic copolymer functionalized with the azo chromophore 4-[N-ethyl-N-(2-hydroxiethyl)]-amino-2′-chloro-4-nitroazobenzene (MMADR13), in its polyelectrolyte form, can be used to fabricate thin films by the layer-by-layer (LbL) technique just if one alternates this anionic polyelectrolyte with a cationic polyelectrolyte such as poly(allylamine hydrochloride) (PAH). Since PAH does not present any particular optical functionality, the main final film feature will came from the side chain DR13 azo-chromophore group due to its large nonlinear optical properties and photoisomerization capabilities. This work reports the electrooptic activity of MMADR13/DR13 LBL films, which arises from the high hiperpolarizability about the azo side chain group.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the optical paths of the light rays propagating inside a nonlinear moving dielectric medium. For rapidly moving dielectrics we show the existence of a distinguished surface which resembles, as far as the light propagation is concerned, the event horizon of a black hole. Our analysis clarifies the physical conditions under which electromagnetic analogues of gravitational black holes can eventually be obtained in laboratory.
Resumo:
We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.
Resumo:
We shall consider a coupled nonlinear Schrodinger equation- Bloch system of equations describing the propagation of a single pulse through a nonlinear dispersive waveguide in the presence of resonances; this could be, for example, a doped optical fibre. By making use of the integrability of the dynamic equations, we shall apply the finite-gap integration method to obtain periodic solutions for this system. Next, we consider the problem of the formation of solitons at a sharp front pulse and, by means of the Whitham modulational theory, we derive the amplitude and velocity of the largest soliton.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Antimony glasses based on the composition Sb2O3-SbPO4 were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n(2), of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response (<100 fs) for all compositions. Enhancement of n(2) was observed by adding lead oxide to the Sb2O3-SbPO4 composition. Large values of n(2)approximate to10(-14) cm(2)/W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications. (C) 2005 American Institute of Physics.
Resumo:
We report the observation of negative nonlinear absorption in fluoroindate glasses doped with erbium ions. The pumping wavelength is 800 nm which is doubly resonant with Er3+ ions transitions. A large nonlinear intensity dependence of the optical transmittance and strong upconverted fluorescence are obtained. The dependence of the upconverted fluorescence intensity with the laser power is described by a system of coupled-rate equations for the energy levels' populations. (C) 1998 American Institute of Physics. [S0021-8979(98)07816-5].
Resumo:
Nonlinear absorption measurements were performed on fluorophosphate glasses with high concentrations of tungsten oxide. Large two-photon absorption coefficients, alpha(2), were determined at 660 nm using nanosecond laser pulses. It was observed that alpha(2) increases for increasing tungsten oxide concentrations and, hence, the optical limiting performance of this glass composition can be controlled. (C) 2002 American Institute of Physics.
Resumo:
nonlinear (NL) refractive index, n(2), of NaPO3-WO3-Bi2O3 glass with different relative amounts of the constituents was measured at 1064 and 800 nm using the Z-scan and the thermally managed eclipse Z-scan techniques, respectively. The values of n(2) >= 10(-15) cm(2)/W and negligible NL absorption coefficient were determined. The large values of the NL refractive index and the very small NL absorption indicate that these materials have large potential for all-optical switching applications. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3212972]