73 resultados para Noncoding Rnas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small non coding RNAs emerged as important characters in several biology aspects. Among then, the most studied are microRNAs (miRNAs) and short interfering RNAs (siRNAs), that regulate their target gene post-transcriptionally in plants, animals and RNAi pathway intermediates, respectively. Both of classes have similar biogenesis being processed by Dicer enzymes and subsequent association with Argonaute enzymes. In plants, miRNAs and siRNAs have important functions in development, genome integrity and biotic and abiotic stress responses. The advances in high-throughtput sequencing and in silico analisys provide the uncover of new small non coding RNAs classes, many of them with unknown functions and biogenesis. tRNA derived small RNAs (tRFs) are a small non coding RNA class, that have as precursor a tRNA molecule. These were uncovers in the last decade in many organisms and, recently, in plants. Recent works detected tRFs from different sizes, with different source portions of the mature tRNA molecule (5’ end; 3’ end, anti-codon loop) and some from the tRNA precursor (pre-tRNA), suggesting that may be a novel class of small RNA and not random degradation products. Works in humans showed that some tRFs are processed by the Dicer enzymes, have association with the Argonaute enzymes and cell differentiation, tumor appearance and gene silencing related functions. Works in Arabidopsis and pumpkin (Cucurbita maxima) showed, respectively, that the tRFs have nutritional stress response possible functions and long distance signaling function between source and drain tissues, and may affect the translation. The tRFs biogenesis in plants are, until now an unknown, absence information about it in the literature and its possible biological functions are few studied yet, making then interesting target for studies among the small non coding RNAs in plants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genome of multicellular organisms shows a ruge index of RNA transcripts that are not protein coding. These ncRNAs act in housekeeping and genic regulation, as well in signaling and cell differentiation, crucial events to embryonic and ontogenetic development. Moreover, another events require the orderly expression these transcripts, as in cromossomic inactivation and genomic imprinting process, and their fail may cause several syndromes, malformations, illness and even death of affected individual. This review focus is to present the main acting pathways of ncRNAs already studied, as well to introduce the actual landscape of Dapper gene cluster and its performance in vertebrate development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BackgroundDetection and quantification of hepatitis C virus (HCV) RNA is integral to diagnostic and therapeutic regimens. All molecular assays target the viral 5'-noncoding region (59-NCR), and all show genotype-dependent variation of sensitivities and viral load results. Non-western HCV genotypes have been under-represented in evaluation studies. An alternative diagnostic target region within the HCV genome could facilitate a new generation of assays.Methods and FindingsIn this study we determined by de novo sequencing that the 3'-X-tail element, characterized significantly later than the rest of the genome, is highly conserved across genotypes. To prove its clinical utility as a molecular diagnostic target, a prototype qualitative and quantitative test was developed and evaluated multicentrically on a large and complete panel of 725 clinical plasma samples, covering HCV genotypes 1-6, from four continents (Germany, UK, Brazil, South Africa, Singapore). To our knowledge, this is the most diversified and comprehensive panel of clinical and genotype specimens used in HCV nucleic acid testing (NAT) validation to date. The lower limit of detection (LOD) was 18.4 IU/ml (95% confidence interval, 15.3-24.1 IU/ml), suggesting applicability in donor blood screening. The upper LOD exceeded 10(-9) IU/ml, facilitating viral load monitoring within a wide dynamic range. In 598 genotyped samples, quantified by Bayer VERSANT 3.0 branched DNA (bDNA), X-tail-based viral loads were highly concordant with bDNA for all genotypes. Correlation coefficients between bDNA and X-tail NAT, for genotypes 1-6, were: 0.92, 0.85, 0.95, 0.91, 0.95, and 0.96, respectively; X-tail-based viral loads deviated by more than 0.5 log10 from 5'-NCR-based viral loads in only 12% of samples (maximum deviation, 0.85 log10). The successful introduction of X-tail NAT in a Brazilian laboratory confirmed the practical stability and robustness of the X-tail-based protocol. The assay was implemented at low reaction costs (US$8.70 per sample), short turnover times (2.5 h for up to 96 samples), and without technical difficulties.ConclusionThis study indicates a way to fundamentally improve HCV viral load monitoring and infection screening. Our prototype assay can serve as a template for a new generation of viral load assays. Additionally, to our knowledge this study provides the first open protocol to permit industry-grade HCV detection and quantification in resource-limited settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) is an essential gene of the parasite Schistosoma mansoni and it is well conserved in its hosts (mouse and human) at the protein but not at the RNA level. This feature prompted us to assess RNA interference (RNAi) to combat schistosomiasis. Small interfering RNAs (siRNAs) were Produced against HGPRTase, injected in infected mice and the number of worms was counted six days after injection. The total number of parasites was reduced by approximately 27% after treatment. RT-PCR analyzes showed a significant reduction in parasite target mRNA but not in host's homologue. The use of low doses of molecules did not oversaturate si- or miRNA pathways as mice survival rates were not affected by siRNAs. This is the first successful in vivo demonstration of a RNAi-based treatment against schistosomiasis. We believe that improvements in molecule delivery and an increase on siRNA dose could rapidly eliminate parasite. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some molecular properties are described of Cole latent virus (CoLV), hitherto designated a tentative species of the Carlavirus genus. CoLV genomic RNA (Ribonucleic acid) of 8.3 Kb is polyadenylated. Two unencapsidated polyadenylated subgenomic RNAs (2.6 and 1.3 Kb) and three double-stranded RNAs (dsRNAs) (8.3, 2.6 and 1.3 Kbp), which are twice the size of the genomic and subgenomics ssRNAs, are produced in CoLV-infected plants, two additional dsRNAs (7.2 and 6.3 Kbp) were also detected plant extracts. By using a Carlavirus specific primer and a CoLV cDNA, a-3'-terminus fragment of 116 bp was amplified; it had homology with the carlaviruses Potato virus M (62%)., Hop latent virus (37%) and Blueberry scorch virus (36%) but no significant homology with 11 other carlaviruses. These results support the classification of CoLV as a distinct species of the Carlavirus genus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um isolado do Southern bean mosaic virus (SBMV), gênero Sobemovirus, encontrado em feijoeiro (Phaseolus vulgaris) no Estado de São Paulo, foi purificado e algumas de suas propriedades moleculares determinadas. As partículas virais apresentam diâmetro de 28-30 nm e proteína capsidial com massa molecular estimada em 30 kDa. Das partículas virais foi extraído RNA de vários tamanhos (4,2 Kb, 3,1 Kb, 2,65 Kb, 2,15 Kb, 1,64 Kb, 1,36 Kb e 1,0 Kb) sendo aquele de 4,2 Kb o RNA genômico e o de 1,0 Kb supostamente um subgenômico que codifica para a proteína capsidial. Ácidos ribonucleicos de mesmo tamanho foram também detectados in vivo, indicando estar associados à replicação viral. Na análise do RNA de fita dupla (dsRNA), somente duas espécies foram detectadas (4,2 Kpb e 1,0 Kpb) correspondendo às formas replicativas do RNA genômico e do subgenômico para proteína capsidial. Os resultados indicam que somente estes dois RNA são replicados por meio de formas replicativas (RFs), enquanto os demais devem ser formados talvez por iniciação interna da fita negativa do RNA genômico. O SBMV-B SP apresentou propriedades moleculares análogas àquelas do SBMV descrito na América do Norte.