17 resultados para Non-rigid image alignment for handshape recognition
Resumo:
In this project, the main focus is to apply image processing techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained. ©2010 IEEE.
Resumo:
Piezoelectric array transducers applications are becoming usual in the ultrasonic non-destructive testing area. However, the number of elements can increase the system complexity, due to the necessity of multichannel circuitry and to the large amount of data to be processed. Synthetic aperture techniques, where one or few transmission and reception channels are necessary, and the data are post-processed, can be used to reduce the system complexity. Another possibility is to use sparse arrays instead of a full-populated array. In sparse arrays, there is a smaller number of elements and the interelement spacing is larger than half wavelength. In this work, results of ultrasonic inspection of an aluminum plate with artificial defects using guided acoustic waves and sparse arrays are presented. Synthetic aperture techniques are used to obtain a set of images that are then processed with an image compounding technique, which was previously evaluated only with full-populated arrays, in order to increase the resolution and contrast of the images. The results with sparse arrays are equivalent to the ones obtained with full-populated arrays in terms of resolution. Although there is an 8 dB contrast reduction when using sparse arrays, defect detection is preserved and there is the advantage of a reduction in the number of transducer elements and data volume. © 2013 Brazilian Society for Automatics - SBA.