76 resultados para Nitrogen fixing plants
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
The aim of the work was to evaluate the productivity, leaf nutrient content and soil nutrient concentration in maize (Zea mays L.) grown in sequence with black oats (Avena strigosa Schreb.) under Leucaena diversifolia alley cropping agroforestry system (AFS) and traditional management system/sole crop (without trees-TS), after two years of cultivation following a randomized block design. The experiment was carried out in the Brazilian Association of Biodynamic Agriculture, in Botucatu—S?o Paulo, Brazil. Treatments were: control (C), chemical fertilizer application (F), biomass of L. diversifolia alley cropping application (B), biomass of L. diversifolia alley cropping + chemical fertilizer application (B + F). In the second year of management it was observed that black oat yield was higher in treatments B + F and F with significant difference in relation to the others treatments in both systems, followed by treatment B. Between systems, only treatment B showed significant difference, with higher yield value corresponding to AFS, reflecting the efficiency of AFS to promote soil fertility. Maize production presented the second year of cultivation an increasing trend in all treatments in both production systems. This result may be due to the cumulative effect of mineralization and maize straw and oats, along the experiment. How productivity was higher in the AFS system, could also be occurring effect of biological nitrogen fixation, water retention and reduction of extreme microclimate through the rows of L. diversifolia. Comparing the AFS and TS, it was observed that the concentration of N in leaf tissue was higher in the AFS treatments, probably due to nitrogen fixation performed through the rows of L. diversifolia, that is a nitrogen fixing tree species. After two years, carbon stocked in soil show higher values in the treatments biomass + fertilizer and biomass application, in both systems, AFS and TS.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effects of nitrogen availability on growth and photosynthesis were followed in plants of sunflower (Helianthus annuus L., var. CATISSOL-01) grown in the greenhouse under natural photoperiod. The sunflower plants were grown in vermiculite under two contrasting nitrogen supply, with nitrogen supplied as ammonium nitrate. Higher nitrogen concentration resulted in higher shoot dry matter production per plant and the effect was apparent from 29 days after sowing (DAS). The difference in dry matter production was mainly attributed to the effect of nitrogen on leaf production and on individual leaf dry matter. The specific leaf weight (SLW) was not affected by the nitrogen supply. The photosynthetic CO2 assimilation (A) of the target leaves was remarkably improved by high nitrogen nutrition. However, irrespective of nitrogen supply, the decline in photosynthetic CO2 assimilation occurred before the end of leaf growth. Although nitrogen did not change significantly stomatal conductance (gs), high-N grown plants had lower intercellular CO2 concentration (C-i) when compared with low-N grown plants. Transpiration rate (E) was increased in high-N grown plants only at the beginning of leaf growth. However, this not resulted in lower intrinsic water use efficiency (WUE). (C) 2004 Elsevier B.V.. All rights reserved.
Resumo:
The accurate identification of the nitrogen content in plants is extremely important since it involves economic aspects and environmental impacts, Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification in plants involves a lot of non-linear parameters and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought SPAD index using artificial neural networks (ANN). The network acts as identifier of relationships among, crop varieties, fertilizer treatments, type of leaf and nitrogen content in the plants (target). So, nitrogen content can be generalized and estimated and from an input parameter set. This approach can form the basis for development of an accurate real time system to predict nitrogen content in plants.
Resumo:
The accurate identification of the nitrogen content in crop plants is extremely important since it involves economic aspects and environmental impacts. Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification involves a lot of nonlinear parametes and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought spectral reflectance of plant leaves using artificial neural networks. The network acts as identifier of relationships among pH of soil, fertilizer treatment, spectral reflectance and nitrogen content in the plants. So, nitrogen content can be estimated and generalized from an input parameter set. This approach can be form the basis for development of an accurate real time nitrogen applicator.
Resumo:
The effect of different doses of nitrogen (N) on gas exchange, relative chlorophyll (Chl) amount, and the content of N in the aerial biomass of lisianthus was evaluated. The treatments consisted of six different concentrations of N (50, 100, 150, 200, 250, and 300 g m(-3) noted as N-50, N-100, N-150, N-200, N-250, and N-300, respectively), applied through the fertirrigation technique. N-250 and N-300 induced increase in the contents of foliar Chl and N in the aerial biomass, that in turn contributed to an increase of photosynthetic activity in lisianthus.
Resumo:
The objective of the present research was to evaluate effects of different strip weed control associated with nitrogen fertilizer on corn applied after planting. The experiment was set and conducted in Botucatu, São Paulo State, Brazil, and the hybrid planted was Dekalb 333-B. A completely randomized block design with four replications was used. Experimental plots were disposed as a factorial scheme 2 x 2 x 4, constituted by two types of weeding on row (with or without manual hoeing), two types of weeding on inter-row (with or without manual hoeing), and four nitrogen levels applied after planting (00, 60, 90, and 120 kg ha-1). Plots were composed by six rows with 5 m length. Nitrogen fertilizer was applied at 35 days after emergence (d.a.e). For weed community it was evaluated: weed density, dominancy, frequency, and relative importance. The main weed species were: Brachiaria plantiginea, Amaranthus retroflexus, Bidens pilosa, Cyperus rotunds, Brachiaria decumbens, Euphorbia heterofila, Oxalis latifolia, Acanthospermum hispidum, Commelina benghalensis. It was evaluated corn height at 40 and 100 d.a.e., first ear insertion height at 100 d.a.e., and final grain yield at harvesting. Plants and first ear insertion height were affected when nitrogen fertilizer was not applied. Treatments without weed control showed that weed interfered negatively with plants height. There were no correlation between weeds and nitrogen fertilizer for all parameters evaluated. Parcels without weed showed the highest ear weights and final grain production. Treatments that received nitrogen fertilizer, independently of studied arrangement, provided higher yields.
Resumo:
With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The Bonus no. 2 was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L-1) and four K concentrations (4, 6, 8, and 10 mmol L-1). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L-1) and K (10 mmol L-1) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm-2). © 2013 Luiz Augusto Gratieri et al.