83 resultados para Network model
Resumo:
Pós-graduação em Design - FAAC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A novel constructive heuristic algorithm to the network expansion planning problem is presented the basic idea comes from Garver's work applied to the transportation model, nevertheless the proposed algorithm is for the DC model. Tests results with most known systems in the literature are carried out to show the efficiency of the method.
Resumo:
An optimisation technique to solve transmission network expansion planning problem, using the AC model, is presented. This is a very complex mixed integer nonlinear programming problem. A constructive heuristic algorithm aimed at obtaining an excellent quality solution for this problem is presented. An interior point method is employed to solve nonlinear programming problems during the solution steps of the algorithm. Results of the tests, carried out with three electrical energy systems, show the capabilities of the method and also the viability of using the AC model to solve the problem.
Resumo:
The usefulness of the application of heuristic algorithms in the transportation model, first proposed by Garver, is analysed in relation to planning for the expansion of transmission systems. The formulation of the mathematical model and the solution techniques proposed in the specialised literature are analysed in detail. Starting with the constructive heuristic algorithm proposed by Garver, an extension is made to the problem of multistage planning for transmission systems. The quality of the solutions found by heuristic algorithms for the transportation model is analysed, as are applications in problems of planning transmission systems.
Resumo:
In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.
Resumo:
This paper presents an algorithm to solve the network transmission system expansion planning problem using the DC model which is a mixed non-linear integer programming problem. The major feature of this work is the use of a Branch-and-Bound (B&B) algorithm to directly solve mixed non-linear integer problems. An efficient interior point method is used to solve the non-linear programming problem at each node of the B&B tree. Tests with several known systems are presented to illustrate the performance of the proposed method. ©2007 IEEE.
Resumo:
The computers and network services became presence guaranteed in several places. These characteristics resulted in the growth of illicit events and therefore the computers and networks security has become an essential point in any computing environment. Many methodologies were created to identify these events; however, with increasing of users and services on the Internet, many difficulties are found in trying to monitor a large network environment. This paper proposes a methodology for events detection in large-scale networks. The proposal approaches the anomaly detection using the NetFlow protocol, statistical methods and monitoring the environment in a best time for the application. © 2010 Springer-Verlag Berlin Heidelberg.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
GPS precise point positioning (PPP) can provide high precision 3-D coordinates. Combined pseudorange and carrier phase observables, precise ephemeris and satellite clock corrections, together with data from dual frequency receivers, are the key factors for providing such levels of precision (few centimeters). In general, results obtained from PPP are referenced to an arbitrary reference frame, realized from a previous free network adjustment, in which satellite state vectors, station coordinates and other biases are estimated together. In order to obtain consistent results, the coordinates have to be transformed to the relevant reference frame and the appropriate daily transformation parameters must be available. Furthermore, the coordinates have to be mapped to a chosen reference epoch. If a velocity field is not available, an appropriated model, such as NNR-NUVEL-IA, has to be used. The quality of the results provided by this approach was evaluated using data from the Brazilian Network for Continuous Monitoring of the Global Positioning System (RBMC), which was processed using GIPSY-OASIS 11 software. The results obtained were compared to SIRGAS 1995.4 and ITRF2000, and reached precision better than 2cm. A description of the fundamentals of the PPP approach and its application in the integration of regional GPS networks with ITRF is the main purpose of this paper.
Resumo:
Several positioning techniques have been developed to explore the GPS capability to provide precise coordinates in real time. However, a significant problem to all techniques is the ionosphere effect and the troposphere refraction. Recent researches in Brazil, at São Paulo State University (UNESP), have been trying to tackle these problems. In relation to the ionosphere effects it has been developed a model named Mod_Ion. Concerning tropospheric refraction, a model of Numerical Weather Prediction(NWP) has been used to compute the zenithal tropospheric delay (ZTD). These two models have been integrated with two positioning methods: DGPS (Differential GPS) and network RTK (Real Time Kinematic). These two positioning techniques are being investigated at São Paulo State University (UNESP), Brazil. The in-house DGPS software was already finalized and has provided very good results. The network RTK software is still under development. Therefore, only preliminary results from this method using the VRS (Virtual Reference Station) concept are presented.
Resumo:
Ionospheric scintillations are caused by time-varying electron density irregularities in the ionosphere, occurring more often at equatorial and high latitudes. This paper focuses exclusively on experiments undertaken in Europe, at geographic latitudes between similar to 50 degrees N and similar to 80 degrees N, where a network of GPS receivers capable of monitoring Total Electron Content and ionospheric scintillation parameters was deployed. The widely used ionospheric scintillation indices S4 and sigma(phi) represent a practical measure of the intensity of amplitude and phase scintillation affecting GNSS receivers. However, they do not provide sufficient information regarding the actual tracking errors that degrade GNSS receiver performance. Suitable receiver tracking models, sensitive to ionospheric scintillation, allow the computation of the variance of the output error of the receiver PLL (Phase Locked Loop) and DLL (Delay Locked Loop), which expresses the quality of the range measurements used by the receiver to calculate user position. The ability of such models of incorporating phase and amplitude scintillation effects into the variance of these tracking errors underpins our proposed method of applying relative weights to measurements from different satellites. That gives the least squares stochastic model used for position computation a more realistic representation, vis-a-vis the otherwise 'equal weights' model. For pseudorange processing, relative weights were computed, so that a 'scintillation-mitigated' solution could be performed and compared to the (non-mitigated) 'equal weights' solution. An improvement between 17 and 38% in height accuracy was achieved when an epoch by epoch differential solution was computed over baselines ranging from 1 to 750 km. The method was then compared with alternative approaches that can be used to improve the least squares stochastic model such as weighting according to satellite elevation angle and by the inverse of the square of the standard deviation of the code/carrier divergence (sigma CCDiv). The influence of multipath effects on the proposed mitigation approach is also discussed. With the use of high rate scintillation data in addition to the scintillation indices a carrier phase based mitigated solution was also implemented and compared with the conventional solution. During a period of occurrence of high phase scintillation it was observed that problems related to ambiguity resolution can be reduced by the use of the proposed mitigated solution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The paper describes a novel neural model to electrical load forecasting in transformers. The network acts as identifier of structural features to forecast process. So that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through load data extracted from a Brazilian Electric Utility taking into account time, current, tension, active power in the three phases of the system. The results obtained in the simulations show that the developed technique can be used as an alternative tool to become more appropriate for planning of electric power systems.