22 resultados para Negative dimension integration
Resumo:
One of the main difficulties in studying quantum field theory, in the perturbative regime, is the calculation of D-dimensional Feynman integrals. In general, one introduces the so-called Feynman parameters and, associated with them, the cumbersome parametric integrals. Solving these integrals beyond the one-loop level can be a difficult task. The negative-dimensional integration method (NDIM) is a technique whereby such a problem is dramatically reduced. We present the calculation of two-loop integrals in three different cases: scalar ones with three different masses, massless with arbitrary tensor rank, with and N insertions of a two-loop diagram.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work we calculate two two-loop massless Feynman integrals pertaining to self-energy diagrams using NDIM (Negative Dimensional Integration Method). We show that the answer we get is 36-fold degenerate. We then consider special cases of exponents for propagators and the outcoming results compared with known ones obtained via traditional methods.
Resumo:
We apply the negative dimensional integration method (NDIM) to three outstanding gauges: Feynman, light-cone, and Coulomb gauges. Our aim is to show that NDIM is a very suitable technique to deal with loop integrals, regardless of which gauge choice that originated them. In the Feynman gauge we perform scalar two-loop four-point massless integrals; in the light-cone gauge we calculate scalar two-loop integrals contributing to two-point functions without any kind of prescriptions, since NDIM can abandon such devices - this calculation is the first test of our prescriptionless method beyond one-loop order; and finally, for the Coulomb gauge we consider a four-propagator massless loop integral, in the split-dimensional regularization context. © 2001 Academic Press.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT
Resumo:
We show that at one-loop order, negative-dimensional, Mellin-Barnes (MB) and Feynman parametrization (FP) approaches to Feynman loop integral calculations are equivalent. Starting with a generating functional, for two and then for n-point scalar integrals, we show how to reobtain MB results, using negative-dimensional and FP techniques. The n-point result is valid for different masses, arbitrary exponents of propagators and dimension.