133 resultados para Natural rubber latex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoplastic starch/natural rubber polymer blends were prepared using directly natural latex and cornstarch. The blends were prepared in an intensive batch mixer at 150 degreesC, with natural rubber content varying from 2.5 to 20%. The blends were characterised by mechanical analysis (stress-strain) and by scanning electron microscopy. The results revealed a reduction in the modulus and in tensile strength, becoming the blends less brittle than thermoplastic starch alone. Phase separation was observed in some compositions and was dependent on rubber and on plasticiser content (glycerol). Increasing plasticiser content made possible the addition of higher amounts of rubber. The addition of rubber was, however, limited by phase separation the appearance of which depended on the glycerol content. Scanning electron microscopy showed a good dispersion of the natural rubber in the continuos phase of thermoplastic starch matrix. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal-oxidative degradation behaviours of raw natural rubber (NR) have been investigated by using thermogravimetry analysis in inert and oxidative atmospheres and the plasticity retention index (PRI). The activation energy E a, was calculated using Horowitz-Metzger and Coats-Redfern methods and compared with PRI. The E a values obtained by each method were in good agreement with each other. The June samples are the least stable rubbers among the studied ones, whereas February samples exhibited the highest values of activation energy, therefore in agreement with the PRI behaviour, which indicates that the thermo-oxidative stability of the June samples are the poorest during the thermo-oxidative degradation reaction. Natural rubber is a product of biological origin, and thus these variations in the values of thermal behaviour and PRI might be related to the genetic differences and alterations of climatic conditions that act directly on the synthesis of non-rubber constituents, which are generally reflected in latex and rubber properties. © 2013 Institute of Materials, Minerals and Mining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural rubber/gold nanoparticles membranes (NR/Au) were studied by ultrasensitive detection and chemical analysis through surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering in our previous work (Cabrera et al., J. Raman Spectrosc. 2012, 43, 474). This article describes the studies of thermal stability and mechanical properties of SERS-active substrate sensors. The composites were prepared using NR membranes obtained by casting the latex solution as an active support (reducing/establishing agents) for the incorporation of colloidal gold nanoparticles (AuNPs). The nanoparticles were synthesized by in situ reduction at different times. The characterization of these sensors was carried out by thermogravimetry, differential scanning calorimetry, scanning electron microscopy (SEM) microscopy, and tensile tests. It is suggested an influence of nanoparticles reduction time on the thermal degradation of NR. There is an increase in thermal stability without changing the chemical properties of the polymer. For the mechanical properties, the tensile rupture was enhanced with the increase in the amount of nanoparticles incorporated in the material. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Green chemistry is an innovative way to approach the synthesis of metallic nanostructures employing eco-friendly substances (natural compounds) acting as reducing agents. Usually, slow kinetics are expected due to, use of microbiological materials. In this report we study composites of natural rubber (NR) membranes fabricated using latex from Hevea brasiliensis trees (RRIM 600) that works as reducing agent for the synthesis of gold nanoparticles. A straight and clean method is presented, to produce gold nanoparticles (AuNP) in a flexible substrate or in solution, without the use of chemical reducing reagents, and at the same time providing good size's homogeneity, reproducibility, and stability of the composites. Copyright © 2013 Flávio C. Cabrera et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)