28 resultados para NUDIX HYDROLASE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study determined if dentin proteases are denatured by phosphoric acid (PA) used in etch-and-rinse dentin adhesives. Dentin beams were completely demineralized with EDTA for 30 days. We acid-etched experimental groups by exposing the demineralized dentin beams to 1, 10, or 37 mass% PA for 15 sec or 15 min. Control beams were not exposed to PA but were incubated in simulated body fluid for 3 days to assay their total endogenous telopeptidase activity, by their ability to solubilize C-terminal crosslinked telopeptides ICTP and CTX from insoluble dentin collagen. Control beams released 6.1 ± 0.8 ng ICTP and 0.6 ± 0.1 ng CTX/mg dry-wt/3 days. Positive control beams pre-incubated in p-aminophenylmercuric acetate, a compound known to activate proMMPs, released about the same amount of ICTP peptides, but released significantly less CTX. Beams immersed in 1, 10, or 37 mass% PA for 15 sec or 15 min released amounts of ICTP and CTX similar to that released by the controls (p > 0.05). Beams incubated in galardin, an MMP inhibitor, or E-64, a cathepsin inhibitor, blocked most of the release of ICTP and CTX, respectively. It is concluded that PA does not denature endogenous MMP and cathepsin activities of dentin matrices. © 2013 International & American Associations for Dental Research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we describe the cDNA cloning, sequencing, and 3-D structure of the allergen hyaluronidase from Polybia paulista venom (Pp-Hyal). Using a proteomic approach, the native form of Pp-Hyal was purified to homogeneity and used to produce a Pp-specific polyclonal antibody. The results revealed that Pp-Hyal can be classified as a glycosyl hydrolase and that the full-length Pp-Hyal cDNA (1315 bp; GI: 302201582) is similar (80-90%) to hyaluronidase from the venoms of endemic Northern wasp species. The isolated mature protein is comprised of 338 amino acids, with a theoretical pI of 8.77 and a molecular mass of 39,648.8 Da versus a pI of 8.13 and 43,277.0 Da indicated by MS. The Pp-Hyal 3D-structural model revealed a central core (α/β)7 barrel, two sulfide bonds (Cys 19-308 and Cys 185-197), and three putative glycosylation sites (Asn79, Asn187, and Asn325), two of which are also found in the rVes v 2 protein. Based on the model, residues Ser299, Asp107, and Glu109 interact with the substrate and potential epitopes (five conformational and seven linear) located at surface-exposed regions of the structure. Purified native Pp-Hyal showed high similarity (97%) with hyaluronidase from Polistes annularis venom (Q9U6V9). Immunoblotting analysis confirmed the specificity of the Pp-Hyal-specific antibody as it recognized the Pp-Hyal protein in both the purified fraction and P. paulista crude venom. No reaction was observed with the venoms of Apis mellifera, Solenopsis invicta, Agelaia pallipes pallipes, and Polistes lanio lanio, with the exception of immune cross-reactivity with venoms of the genus Polybia (sericea and ignobilis). Our results demonstrate cross-reactivity only between wasp venoms from the genus Polybia. The absence of cross-reactivity between the venoms of wasps and bees observed here is important because it allows identification of the insect responsible for sensitization, or at least of the phylogenetically closest insect, in order to facilitate effective immunotherapy in allergic patients. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metagenomics has been widely employed for discovery of new enzymes and pathways to conversion of lignocellulosic biomass to fuels and chemicals. In this context, the present study reports the isolation, recombinant expression, biochemical and structural characterization of a novel endoxylanase family GH10 (SCXyl) identified from sugarcane soil metagenome. The recombinant SCXyl was highly active against xylan from beechwood and showed optimal enzyme activity at pH 6,0 and 45°C. The crystal structure was solved at 2.75 Å resolution, revealing the classical (β/α)8-barrel fold with a conserved active-site pocket and an inherent flexibility of the Trp281-Arg291 loop that can adopt distinct conformational states depending on substrate binding. The capillary electrophoresis analysis of degradation products evidenced that the enzyme displays unusual capacity to degrade small xylooligosaccharides, such as xylotriose, which is consistent to the hydrophobic contacts at the +1 subsite and low-binding energies of subsites that are distant from the site of hydrolysis. The main reaction products from xylan polymers and phosphoric acid-pretreated sugarcane bagasse (PASB) were xylooligosaccharides, but, after a longer incubation time, xylobiose and xylose were also formed. Moreover, the use of SCXyl as pre-treatment step of PASB, prior to the addition of commercial cellulolytic cocktail, significantly enhanced the saccharification process. All these characteristics demonstrate the advantageous application of this enzyme in several biotechnological processes in food and feed industry and also in the enzymatic pretreatment of biomass for feedstock and ethanol production. © 2013 Alvarez et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Alimentos e Nutrição - FCFAR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia Agropecuária - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia Agropecuária - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background- The evaluation of the effects of new compounds and nonconventional anti-tuberculous drugs have grown and become increas-ingly more popular in recent years. Studies have shown anti-tuberculous activity for Ruthenium complexes, including organometallic com-pounds containing phosphine ligands such as picolinic acid generating great expectations and hopes. Methods- The Representational Difference Analysis (RDA) was applied in order to gain insight about differences in expression of Mycobacte-rium tuberculosis H37Rv exposed to [Ru(dppb)(pic)(bypy)] PF6 (SCAR1) and isoniazid (INH). Total RNA was extracted from the bacillus not exposed and exposed to SCAR1 and INH separately at concentration of MIC for 12 hours at 35°C. RDA was carried out and differentially expressed products were sequenced. Results- RDA-sequencing identified, for both compounds, orthologs that encode hypothetical and predict proteins. One related cell wall syn-thesis gene, identified by RDA, and genes related to INH target as inhA, katG and ahpC had their expression confirmed and quantified by real-time PCR. The gene encoding the cell wall associated hydrolase was induced 4.627 and 1.189, inhA 0.983 and 1.027, katG 1.111 and 1.345 and ahpC 1.063 and 1.039 fold after exposure to SCAR1 and INH respectively, compared to not exposed growth. Conclusion- The RDA brings, for the first time, directions to study related genes with metabolic pathways of SCAR1. RDA and Real-Time PCR highlight the idea that one of the SCAR1 interaction, in M tuberculosis may be in the cell wall biosynthesis considering the differential expression of a cell wall hydrolase and warrants further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel, easily renewable nanocomposite interface based on layer-by-layer (LbL) assembled cationic/anionic layers of carbon nanotubes customized with biopolymers is reported. A simple approach is proposed to fabricate a nanoscale structure composed of alternating layers of oxidized multiwalled carbon nanotubes upon which is immobilized either the cationic enzyme organophosphorus hydrolase (OPH; MWNT−OPH) or the anionic DNA (MWNT−DNA). The presence of carbon nanotubes with large surface area, high aspect ratio and excellent conductivity provides reliable immobilization of enzyme at the interface and promotes better electron transfer rates. The oxidized MWNTs were characterized by thermogravimetric analysis and Raman spectroscopy. Fourier transform infrared spectroscopy showed the surface functionalization of the MWNTs and successful immobilization of OPH on the MWNTs. Scanning electron microscopy images revealed that MWNTs were shortened during sonication and that LbL of the MWNT/biopolymer conjugates resulted in a continuous surface with a layered structure. The catalytic activity of the biopolymer layers was characterized using absorption spectroscopy and electrochemical analysis. Experimental results show that this approach yields an easily fabricated catalytic multilayer with well-defined structures and properties for biosensing applications whose interface can be reactivated via a simple procedure. In addition, this approach results in a biosensor with excellent sensitivity, a reliable calibration profile, and stable electrochemical response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ