140 resultados para NBR
Resumo:
The compaction rate, the relation between the density of the wood panel and the density of the wood used for producing the particles, is an indicator of the product's densification. Among the various types of wood panels, particleboards are widely employed in the lumber industry, mainly for the furniture production. This paper presents a study of the relation between the compaction rate and the properties of tensile strength perpendicular to surface, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) obtained from a static bending test, thickness swelling and water absorption (2 and 24 hours). These properties were calculated according to the Brazilian ABNT, NBR 14810 standard. Particleboards were produced using the species Pinus elliotti and adhesive ureaformaldehyde. The relation was established by a multiple linear regression, and the most appropriate statistical models were determined. The estimated models indicate statistically significant effects of water absorption in 2 hours and MOR in the particleboards' compaction rate.
Resumo:
Latex is the main product extracted from rubber trees (Hevea brasiliensis). In Brazil, at the end of the production cycle of latex, the wood of rubber tree is traditionally used for energy purposes, but several international studies have reported consolidated practices of adding value to it. The objective of this paper was to evaluate the quality of wood and classify it structurally based on its mechanical properties. Six 20-year-old trees of the clone GT 1 of rubber tree proceeding from Itajobi, State of Sao Paulo, Brazil were sampled. Reduced dimensions specimens in the radial direction of the wood were produced to evaluate the quality by compression parallel to the grain, static bending and Janka hardness tests. Two specimens, one from the lower log (since the ground up to breast height) and one from the higher log (from breast height up to 2.50 m) were produced for structural classification of the wood based on the characteristic strength in compression parallel to the grain (NBR 7190 norm, 1997). The wood was classified as C40 (fc0k ≥ 40 MPa) class. Results revealed that the strength was not statistically different in the radial direction (except for the Janka hardness), though tending to increase from pith to bark.
Resumo:
In the majority of cases of bone fracture requiring surgery, orthopedic implants (screw-plate and screw) are used for osteosynthesis and the infections associated with such implants are due to the growth of microorganisms in biofilms. The objective of this study was to identify microorganisms recovered from osteosynthesis implants used to fix bone fractures, to assess the viability of the cells and the ability of staphylococci to adhere to a substrate and to determine their sensitivity/resistance to antimicrobials. After surgical removal, the metal parts of austenitic stainless steel (ASTM F138/F139 or ISO NBR 5832-1/9) were transported to the Laboratory of Clinical Microbiology, washed in buffer and subjected to ultrasonic bath at 40±2 kHz for 5 minutes. The sonicated fluid was used to seed solid culture media and cell viability was assessed under the microscope by with the aid of a fluorescent marker. The production of extracellular polysaccharide by Staphylococcus spp. was investigated by means of adhesion to a polystyrene plate. The profile of susceptibility to antimicrobials was determined by the disk diffusion assay. The most frequently isolated bacteria included coagulase-negative Staphylococcus resistant to erythromycin, clindamycin and oxacillin. Less frequent were Pseudomonas aeruginosa resistant to trimethoprim/sulfamethoxazole and ampicillin, Acinetobacter baumannii resistant to ceftazidime, Enterobacter cloacae resistant to cephalothin, cefoxitin, cefazolin, levofloxacin and ciprofloxacin, Bacillus spp. and Candida tropicalis. The observation of slides by fluorescence microscope showed clusters of living cells embedded in a transparent matrix. The test for adherence of coagulase-negative Staphylococcus to a polystyrene plate showed that these microorganisms produce extracellular polysaccharide. In conclusion, the metal parts were colonized by bacteria related to orthopedic implant infection, which were resistant to multiple antibiotics.
Resumo:
This research aimed to test particleboard with leucena (Leucaena leucocephala) wood particles and polyurethane resin castor oil based. The response variables are: modulus of rupture (MOR), internal adhesion (AI), apparent density (dap) and wood moisture content (um). The experiments were developed based on the methodological procedures of the ABNT NBR 14810:2002 standard. The particleboards were manufactured by hot-pressing at 4MPa and 90°C, using timber particles with 5% of moisture content and 10% of monocomponent and bicomponent polyurethane resin. The higher moisture content was achieved when the monocomponent polyurethane resin was used. The bicomponent polyurethane resin provided a percent increase of 43.7% and 22.7% on the modulus of rupture and apparent density, respectively, when compared to the standard limit. The internal adhesion of the panels manufactured with monocomponent resin was 2.45 times higher than the standard limit. The confidence interval between means revealed that the internal adhesion and apparent density exhibited statistical equivalence. A good correlation between the internal adhesion and apparent density was found, for this reason it was possible to estimate the internal adhesion of the panels based on the apparent density data.
Resumo:
The purpose of this study was to evaluate the physical and mechanical properties of particleboard made with pruning wastes from Ipê (Tabebuia serratifolia) and Chapéu-de-Sol (Terminalia catappa) trees. Particleboards were prepared with both wood species, using all the material produced by grinding the pruning wastes. The particleboards had dimensions of 45×45 cm, a thickness of approximately 11.5 mm and an average density of 664 kg/m3. A urea-formaldehyde adhesive was used in the proportion of 12% of the dry particle mass. The particleboards were pressed at a temperature of 130 C for 10 mins. The physical and mechanical properties analyzed were density, moisture content, thickness swelling, percentage of lignin and cellulose, modulus of resilience, modulus of elasticity and tensile strength parallel to the grain, accordingly to the standards NBR 14810 and CS 236-66 (1968). The particleboards were considered to be of medium density. The particle size significantly affected the static bending strength and tensile strength parallel to the grain. Ipê presented better results, demonstrating a potential for the production and use of particleboard made from this species. © The Author(s) 2013.
Resumo:
Pós-graduação em Design - FAAC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Civil - FEIS