351 resultados para NACL INTAKE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Male rats received intracerebroventricular (ICV) renin (600 ng) or daily subcutaneous injections of deoxycorticosterone (5 mg) to induce 3% NaCl and water intake. Noradrenaline (NOR; 40-160 nmol) and clonidine (CLO; 5-20 nmol) injected ICV. induced 70 to 100% inhibition of the intakes. Phenylephrine (PHE; 40-160 nmol) injected ICV induced 60 to 95% inhibition of the intakes. NOR and PHE induced a stronger inhibition on the 3% NaCl intake induced by renin than on the intake induced by deoxycorticosterone (DOC), and CLO did the opposite. CLO was always more effective than PHE to induce inhibition of the intakes. The results suggest that NOR inhibits hormone (angiotensin II, aldosterone)-induced NaCl intake by acting mainly on alpha(2)-adrenergic receptors.
Resumo:
Clonidine combined with adrenergic antagonists were injected in the medial septal area in order to characterize the type of receptors involved with its inhibitory effect on 3% NaCl and water intake of sodium-depleted (furosemide + 24 h of removal of ambient sodium) and 30-h water-deprived rats, respectively. The inhibitory effect of clonidine (20 nmol) on need-induced water intake was reduced 50% by an 80-nmol dose of either idazoxan, yohimbine or prazosin. The inhibitory effect of clonidine (30 nmol) on need-induced 3% NaCl intake was completely antagonized by idazoxan (80, 160 nmol), not altered by yohimbine (40-160 nmol), and partially potentiated (40 nmol) or inhibited (160 nmol) by prazosin. Propranolol did not alter the effects of clonidine on either water (80 nmol) or 3% NaCl (40-160 nmol) intake. The results suggest that the inhibitory effects of clonidine on 3% NaCl and water intake are mediated by different types of alpha2-adrenergic receptors. Copyright (C) 1997 Elsevier B.V.
Resumo:
In the present study, noradrenaline (NOR, alpha-non-specific adrenergic agonist), clonidine (CLO, alpha(2)), phenylephrine (PHE, alpha(1)) or isoproterenol (ISO, beta-agonist) was injected in the medial septal area (MSA) of water-deprived, sodium-deplete or food-deprived rats. NOR (80, 160 nmol) inhibited the intake of 3% NaCl, water deprivation-induced and meal-associated water intake. Food deprivation-induced food intake and 10% sucrose intake were not altered by NOR. CLO (10, 20, 30, 40 nmol) inhibited (80-100% inhibition compared to control during 60 min) the intake of 3% NaCl, water deprivation-induced and meal-associated water intake. CLO had a weaker inhibition on food and 10% sucrose intake (30-50% less than the control during 60 and 15 min, respectively). PHE (160 nmol) inhibited 3% NaCl intake and 10% sucrose intake (30% less than the control for 15-30 min). ISO (160 nmol) did not after water or 3% NaCl intake. NOR induced an increase, CLO and ISO induced a decrease, and PHE no alteration in mean arterial pressure. NOR did not alter water or 3% NaCl intake when injected unilaterally into the caudate nucleus. The results suggest that NOR injected in the MSA acts on alpha(2)-adrenergic receptors inducing a specific inhibition of 3% NaCl and water intake. (C) 1997 Elsevier B.V.
Resumo:
This study investigated the roles of serotonin (5-HT) receptors in the lateral parabrachial nucleus (LPBN), and brain angiotensin type 1 (AT(1)) receptors in the intake of 0.3 M NaCl and water induced by angiotensin II (ANG II). Rats were implanted with stainless steel cannulas for injections into tho subfornical organ (SFO) and into the LPBN. Bilateral LPBN pretreatment with the nonselective serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (4 mu g/200 nl) markedly enhanced 0.3 M NaCl intake induced by injections of ANG II (20 ng/200 nl) into the SFO. Pretreatment of the SFO with the AT(1) receptor antagonist losartan (1 mu g/200 nl) blocked the intake of 0.3 M NaCl induced by ANG II in combination with LPBN methysergide injections. These results suggest that serotonergic mechanisms associated with the LPBN inhibit the expression of salt appetite induced by ANG II injections into Ihs SFO. In addition, the results indicate that the enhanced NaCl intake generated by central administration of ANG II in the presence of LPBN 5-HT blockade is mediated bg brain ATI receptors.
Resumo:
Inhibitory mechanisms in the lateral parabrachial nucleus (LPBN) and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. Besides increasing fluid depletion-induced sodium intake, the activation of GABA(A) receptors with muscimol into the LPBN also induces ingestion of 0.3 M NaCl in normonatremic, euhydrated rats. It has been suggested that inhibitory mechanisms activated by osmotic signals are blocked by GABAA receptor activation in the LPBN, thereby increasing hypertonic NaCl intake. Therefore, in the present study we investigated the effects of muscimol injected into the LPBN on water and 0.3 M NaCl intake in hyperosmotic cell-dehydrated rats (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In euhydrated rats, muscimol (0.5 nmol/0.2 mu l), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (24.6 +/- 7.9 vs. vehicle: 0.5 +/- 0.3 ml/180 min) and water (6.3 +/- 2.1 vs. vehicle: 0.5 +/- 0.3 ml/180 min). One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of muscimol into the LPBN also induced 0.3 M NaCl intake (22.1 +/- 5.2 vs. vehicle: 0.9 +/- 0.8 ml/210 min) and water intake (16.5 +/- 3.6 vs. vehicle: 7.8 +/- 1.8 ml/210 min). The GABAA antagonist bicuculline (0.4 nmol/0.2 mu l) into the LPBN reduced the effect of muscimol on 0.3 M NaCl intake (7.1 +/- 2.1 ml/210 min). Therefore, the activation of GABAA receptors in the LPBN induces ingestion of 0.3 M NaCl by hyperosmotic cell-dehydrated rats, suggesting that plasma levels of renin or osmolarity do not affect sodium intake after the blockade of LPBN inhibitory mechanisms with muscimol. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We investigated the effects of injection into the supraoptic nucleus (SON) of losartanand PD 123319 (nonpeptide AT(1) and AT(2)- angiotensin II [ANG II] receptor antagonists, respectively); d(CH2)(5)-Tyr(Me)-AVP (AVPA; an arginine-vasopressin [AVP] V-1 receptor antagonist), FK 409 (a nitric oxide [NO] donor), and N-W-mtro-(L)-arginine methyl ester ((L)-NAME; an NO synthase inhibitor) oil water intake, sodium chloride 3% (NaCl) intake and arterial blood pressure induced by injection of ANG 11 into the lateral septal area (LSA). Mate Holtzman rats (250-300 g) were implanted with cannulae into SON and LSA unilaterally. The drugs were injected in 0.5 mul over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. ANG II was injected at a dose of 10 pmol. ANG II antagonists and AVPA were injected at doses of 80 nmol. FK 409 and (L)-NAME were injected at doses of 20 and 40 mug, respectively. Water and NaCl intake was measured over a 2-h period. Prior administration of losartan into the SON decreased water and NaCl intake induced by injection of ANG II. While there was a decrease in water intake, ANG II-induced NaCl intake was significantly increased following injection of AVPA. FK 409 injection decreased water intake and sodium intake induced by ANG II. L-NAME alone increased water and sodium intake and induced a pressor effect. (L)-NAME-potentiated water and sodium intake induced by ANG II. PD 123319 produced no changes in water or sodium intake induced by ANG II. The prior administration of losartan or AVPA decreased mean arterial pressure (MAP) induced by ANG II. PD 123319 decreased the pressor effect of ANG II to a lesser degree than losartan. FK 409 decreased the pressor effect of ANG II while (L)-NAME potentiated it. These results suggest that both ANG II AT, and AVP V, receptors and NO within the SON may be involved in water intake, NaCl intake and the pressor response were induced by activation of ANG II receptors within the LSA. These results do not support the involvement of LSA AT(2) receptors in the mediation of water and NaCl intake responses induced by ANG II, but influence the pressor response. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Serotonin [5-hydroxytryptamine (5-HT)] and CCK injected into the lateral parabrachial nucleus (LPBN) inhibit NaCl and water intake. In this study, we investigated interactions between 5-HT and CCK into the LPBN to control water and NaCl intake. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were treated with furosemide + captopril to induce water and NaCl intake. Bilateral LPBN injections of high doses of the 5-HT antagonist methysergide (4 mug) or the CCK antagonist proglumide (50 mug), alone or combined, produced similar increases in water and 1.8% NaCl intake. Low doses of methysergide (0.5 mug) + proglumide (20 mug) produced greater increases in NaCl intake than when they were injected alone. The 5-HT2a/2c agonist 2,5-dimetoxy-4-iodoamphetamine hydrobromide (DOI; 5 mug) into the LPBN reduced water and NaCl intake. After proglumide (50 mug) + DOI treatment, the intake was not different from vehicle treatment. CCK-8 (1 mug) alone produced no effect. CCK-8 combined with methysergide (4 mug) reduced the effect of methysergide on NaCl intake. The data suggest that functional interactions between 5-HT and CCK in the LPBN may be important for exerting inhibitory control of NaCl intake.
Resumo:
The present study investigated the role of several 5-HT receptor subtypes in the lateral parabrachial nucleus (LPBN) in the control of sodium appetite (i.e. NaCl consumption). Male Holtzman rats had cannulas implanted bilaterally into the LPBN for the injection of 5-HT receptor agonists and antagonists in conjunction with either acute fluid depletion or 24-h sodium depletion. Following these treatments, access to 0.3 M NaCl was provided and the intakes of saline and water were measured for the next 2 h. Bilateral injections of the 5-HT2A receptor antagonist, ketanserin or the 5-HT2C receptor antagonist, mianserin into the LPBN increased 0.3 M NaCl intake without affecting water intake induced by acute fluid-depletion. Bilateral injections of the 5-HT2B receptor agonist, BW723C86 hydrochloride, had no effect on 0.3 M NaCl or water intake under these conditions. Treatment of the LPBN with the 5-HT2B/2C receptor agonist, 2-(2-methyl-4-clorophenoxy) propanoic acid (mCPP) caused dose-related reductions in 0.3 M NaCl intake after 24 h sodium depletion. The effects of mCPP were prevented by pretreating the LPBN with the 5-HT2B/2C receptor antagonist, SDZSER082. Activation of 5-HT3 receptors by the receptor agonist, 1-phenylbiguanicle (PBG) caused dose-related increases in 0.3 M NaCl intake. Pretreatment of the LPBN with the 5-HT3 receptor antagonist, 1-methyl-N-[8-methyl-8-azabicyclo (3.2.1)-oct-3-yl]-1H-indazole-3-carboxamide (LY-278,584) abolished the effects of PBG, but LY-278,584 had no effects on sodium or water intake when injected by itself. PBG injected into the LPBN did not alter intake of palatable 0.06 M sucrose in fluid replete rats. The results suggest that activation of the 5-HT2A and 5-HT2C receptor subtypes inhibits sodium ingestion. In contrast, activation of the 5-HT3 receptor subtype increases sodium ingestion. Therefore, multiple serotonergic receptor subtypes in the LPBN are implicated in the control of sodium intake, sometimes by mediating opposite effects of 5-HT. The results provide new information concerning the control of sodium intake by LPBN mechanisms. (C) 2007 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
It has been shown that the serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) inhibit NaCl intake in different models of angiotensin II (ANG II)-dependent NaCl intake in rats. However, there is no information about the involvement of LPBN serotonergic mechanisms on NaCl intake in a model of NaCl intake not dependent on ANG II like deoxycorticosterone (DOCA)-induced NaCl intake. Therefore, in this study we investigated the effects of bilateral injections of serotonergic agonist and antagonist into the LPBN on DOCA-induced 1.8% NaCl intake in rats. Male Holtzman rats were treated with s.c. DOCA (10 mg/rat each every 3 days). After a period of training, in which the rats had access to 1.8% NaCI during 2 h for several days, the rats were implanted with stainless steel cannulas bilaterally into the LPBN. Bilateral injections of the serotonergic receptor antagonist methysergide (4 mug/0.2 mul each site) in the LPBN increased 1.8% NaCI intake (32.2+/-3.9 versus vehicle: 15.0+/-1.6 ml/2 h, n = 10) and water intake (11.5+/-3.5 versus vehicle: 3.2+/-1.0 ml/2 h). Injections of the serotonergic 5HT(2A/2C) receptor agonist DOI (5 mug/0,2 mul each site) in the LPBN reduced 1.8% NaCl intake (6.8+/-1.7 versus saline: 12.4+/-1.9 ml/2 h, n = 10) and water intake (2.2+/-0.8 versus saline: 4.4+/-1.0 ml/2 h). Besides the previously demonstrated importance for the control of ANG II-dependent water and NaCl intake, the data show that the serotonergic inhibitory mechanisms of the LPBN are also involved in the control of DOCA-induced NaCl intake. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work investigated whether the preference for NaCl solution is shifted to more palatable solutions in the adult male sodium-depleted rat (n=6-10 per group). Animals had daily access to three bottles, one containing water, another 1.8% NaCl (300 mM), and a third containing 0.9% NaCl (150 mM), Gatorade (orange-OG or grape flavored-GG), orange juice (sweetened or unsweetened, from concentrate), or 10% sucrose (no sodium). Sodium content in Gatorade and orange juice ranged from 7 to 14 mEq/l. Daily intakes were recorded for at least 5 days prior to sodium depletion. Then, the animals were depleted of sodium (diuretic plus sodium-deficient diet and water for 24 h). Then, the other two bottles were returned to the animals and the intakes were recorded for 120 min (sodium preference test, SPT). Daily intake from the third bottle (except for unsweetened orange juice) at least doubled the daily 1.8% NaCl intake. The average 1.8% NaCl intake (13 +/- 2 ml) in the SPT was higher than the intake of 10% sucrose (6 +/- 1 ml) or of any other solution (less than 6 ml). The intakes of 1.8% NaCl and 0.9% NaCl (10 +/- 3 ml) were similar during the SPT. The animals also preferred 0.9% NaCl (27 +/- 1 ml) to OG (3 +/- 1 ml) in the absence of 1.8% NaCl in the SPT. Therefore, the preference for sodium in sodium-depleted rats also applies when palatable and nutritive solutions are simultaneously available. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
It has been shown that central or peripheral injections of the peptide relaxin induces water intake, not sodium intake in rats. Important inhibitory mechanisms involving serotonin and other neurotransmitters in the control of water and NaCl intake have been demonstrated in the lateral parabrachial nucleus (LPBN). In the present Study, we investigated the effects of bilateral injections of methysergide (serotonergic receptor antagonist) into the LPBN on intracerebroventricular (i.c.v.) relaxin-induced water and NaCl intake in rats. Additionally, the effect of the blockade of central angiotensin AT(1) receptors with i.c.v. losartan on relaxin-induced water and NaCl intake in rats treated with methysergide into the LPBN was also investigated. Male Holtzman rats with cannulas implanted into the lateral ventricle (LV) and bilaterally in the LPBN were used. Intracerebroventricular injections of relaxin (500 ng/l mul) induced water intake (5.1+/-0.7 ml/120 min), but not significant 1.8% NaCl intake (0.5+/-0.4 ml/120 min). Bilateral injections of methysergide (4 mug/0.2 mul) into the LPBN strongly stimulated relaxin-induced 1.8% NaCl intake (34.5+/-10.9 ml/120 min) and slightly increased water intake (10.5+/-4.9 ml/120 min). The pretreatment with i.c.v. losartan (100 mug/l mul) abolished the effects of i.c.v. relaxin combined with LPBN methysergide on 1.8% NaCI intake (0.5+/-0.4 ml/120 min). Losartan (100 mug/l mul) also abolished relaxin-induced water intake in rats injected with methysergide into the LPBN (1.6+/-0.8 ml/120 min) or not (0.5+/-0.3 ml/120 min). Losartan (50 mug/l mul) partially reduced the effects of relaxin. The results show that central relaxin interacting with central angiotensinergic mechanisms induces NaCl intake after the blockade of LPBN serotonergic mechanisms. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The inhibition of sodium intake by increased plasma osmolarity may depend on inhibitory mechanisms present in the lateral parabrachial nucleus. Activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus is suggested to deactivate inhibitory mechanisms present in this area increasing fluid depletion-induced 0.3 M NaCl intake. Considering the possibility that lateral parabrachial nucleus inhibitory mechanisms are activated and restrain sodium intake in animals with increased plasma osmolarity, in the present study we investigated the effects on water and 0.3 M NaCl intake produced by the activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus in rats with increased plasma osmolarity. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist, 0.5 nmol/0.2 mu l, n=10) into the lateral parabrachial nucleus induced a strong ingestion of 0.3 M NaCl intake (19.1 +/- 5.5 ml/2 h vs. vehicle: 1.8 +/- 0.6 ml/2 h), without changing water intake (15.8 +/- 3.0 ml/2 h vs. vehicle: 9.3 +/- 2.0 ml/2 h). However, moxonidine into the lateral parabrachial nucleus in satiated rats not treated with 2 M NaCl produced no change on 0.3 M NaCl intake. The pre-treatment with RX 821002 (alpha(2)-adrenergic receptor antagonist, 20 nmol/0.2 mu l) into the lateral parabrachial nucleus almost abolished the effects of moxonidine on 0.3 M NaCl intake (4.7 +/- 3.4 ml/2 h). The present results suggest that alpha(2)-adrenergic receptor activation in the lateral parabrachial nucleus blocks inhibitory mechanisms, thereby allowing ingestion of hypertonic NaCl under conditions of extracellular hyperosmolarity. We suggest that during cell dehydration, circuits subserving sodium appetite are activated, but at the same time strongly inhibited through the lateral parabrachial nucleus. (c) 2006 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Central injections of the alpha(2) adrenergic/imidazoline receptor agonist moxonidine inhibit water and NaCl intake in rats. In the present study, we investigated the possible involvement of central alpha(2) adrenergic receptors on the inhibitory effect of moxonidine in 0.3 M NaCl intake induced by 24 h sodium depletion. Male Holtzman rats with stainless-steel cannulas implanted into the lateral ventricle (LV) were used. Sodium depletion was produced by the treatment with the diuretic furosemide (20 mg/kg of body weight) injected subcutaneously + 24 h of sodium-deficient diet. Intracerebroventricular (icv) injections of moxonidine (20 nmol/l mul) reduced sodium depletion-induced 0.3 M NaCl intake (6.6 +/- 1.9 ml/120 min vs. vehicle: 12.7 +/- 1.7 ml/120 min). Pre-treatment with the alpha(2) adrenoreceptor antagonists RX 821002 (80 nmol/l mul), SK&F 86466 (640 nmol/l mul) and yohimbine (320 nmol/3 mul) injected icv abolished the inhibitory effect of icv moxonidine on sodium depletion-induced 0.3 M NaCl intake (13.3 +/- 1.4, 15.7 +/- 1.7 and 11.8 +/- 2.2 ml/120 min, respectively). The results show that the activation of alpha(2) adrenoreceptors is essential for the inhibitory effect of central moxonidine on sodium depletion-induced NaCl intake. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)