94 resultados para Mouth Breathing
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aim: to evaluate the association of the long face pattern and the mouth breathing, correlating them with the intraoral characteristics. Methods: the sample was composed of 60 Caucasian Brazilian descendents patients, divided in two groups according to the subjective of their facial pattern. The patients were clinically evaluated to determine their respiratory pattern and the diagnosed of malocclusion. The lateral teleradiographies were drawn in standard to verification facial cephalometric pattern. Chi-Square analysis evaluated the association between subjective facial pattern and type of breathing; facial pattern subjective and cephalometric facial pattern. It was also the chi-square with yates correction to evaluate the associations between subjective facial pattern, type of breathing and posterior cross bite; facial subjective standard, type of breathing and anterior open bite; facial pattern between subjective, type breathing and type of Angle´s malocclusion. Results: it showed that long face pattern (group 1) was associated with mouth breathing habit and facial cephalometric standard. Moreover, the long-face pattern (group 1) presented that mouth breathing was associated with a posterior crossbite and Angle Class II malocclusion. Conclusion: the long face pattern - evaluated with subjective facial analyses - was associated with mouth breathing. The long face pattern and patients with mouth breathing was associated with a posterior crossbite and Class II Angle's malocclusion.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The cardiopulmonary effects of desflurane and sevoflurane anesthesia were compared in cats breathing spontaneously. Heart (HR) and respiratory (RR) rates; systolic (SAP), diastolic (DAP) and mean arterial (MAP) pressures; partial pressure of end tidal carbon dioxide (PETCO(2)), arterial blood pH (pH), arterial partial pressure of oxygen (PaO(2)) and carbon dioxide (PaCO(2)); base deficit (BD), arterial oxygen saturation (SaO(2)) and bicarbonate ion concentration (HCO(3)) were measured. Anesthesia was induced with propofol (8 +/- 2.3 mg/kg IV) and maintained with desflurane (GD) or sevoflurane (GS), both at 1.3 MAC. Data were analyzed by analysis of variance (ANOVA), followed by the Tukey test (P < 0.05). Both anesthetics showed similar effects. HR and RR decreased when compared to the basal values, but remained constant during inhalant anesthesia and PETCO(2) increased with time. Both anesthetics caused acidemia and hypercapnia, but BD stayed within normal limits. Therefore, despite reducing HR and SAP (GD) when compared to the basal values, desflurane and sevoflurane provide good stability of the cardiovascular parameters during a short period of inhalant anesthesia (T20-T60). However, both volatile anesthetics cause acute respiratory acidosis in cats breathing spontaneously. (c) 2004 ESFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Resumo:
The present study was designed to explore systematically the midbrain of unanesthetized, decerebrate anuran amphibians (bullfrogs), using chemical and electrical stimulation and midbrain transections to identify sites capable of exciting and inhibiting breathing. Ventilation was measured as fictive motor output from the mandibular branch of the trigeminal nerve and the laryngeal branch of the vagus nerve. The results of our transection studies suggest that, under resting conditions, the net effect of inputs from sites within the rostral half of the midbrain is to increase fictive breathing frequency, whereas inputs from sites within the caudal half of the midbrain have no net effect on fictive breathing frequency but appear to act on the medullary central rhythm generator to produce episodic breathing. The results of our stimulation experiments indicate that the principal sites in the midbrain that are capable of exciting or inhibiting the fictive frequency of lung ventilation, and potentially clustering breaths into episodes, appear to be those primarily involved in visual and auditory integration, motor functions, and attentional state.
Resumo:
Despite recent advances, the mechanisms of neurorespiratory control in amphibians are far from understood. One of the brainstem structures believed to play a key role in the ventilatory control of anuran amphibians is the nucleus isthmi (NI). This nucleus is a mesencephalic structure located between the roof of the midbrain and the cerebellum, which differentiates during metamorphosis; the period when pulmonary ventilation develops in bullfrogs. It has been recently suggested that the NI acts to inhibit hypoxic and hypercarbic drives in breathing by restricting increases in tidal volume. This data is similar to the influence of two pontine structures of mammals, the locus coeruleus and the nucleus raphe magnus. The putative mediators for this response are glutamate and nitric oxide. Microinjection of kynurenic acid (an ionotropic receptor antagonist of excitatory amino acids) and L-NAME (a non-selective NO synthase inhibitor) elicited increases in the ventilatory response to hypoxia and hypercarbia. This article reviews the available data on the role of the NI in the control of ventilation in amphibians. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This review of foot-and-mouth disease in cloven-hoofed, free-living animals, describes the disease, the wide range of the hosts, the carrier state, and the interrelationship between disease in domestic livestock and wildlife. This information becomes even more crucial to the development of control strategies when linked to the process of pathogenesis and the epidemiology of the disease.
Resumo:
Synbranchus marmoratus is a facultative air-breathing fish, which uses its buccal cavity as well as its gills for air-breathing. S. marmoratus shows a very pronounced tachycardia when it surfaces to air-breathe. An elevation of heart rate decreases cardiac filling time and therefore may cause a decline in stroke volume (VS), but this can be compensated for by an increase in venous tone to maintain stroke volume. Thus, the study on S. marmoratus was undertaken to investigate how stroke volume and venous function are affected during air-breathing. To this end we measured cardiac output (Q), heart rate (fH), central venous blood pressure (PCV), mean circulatory filling pressure (MCFP), and dorsal aortic blood pressures (PDA) in S. marmoratus. Measurements were performed in aerated water (P-O2 > 130 mmHg), when the fish alternated between gill ventilation and prolonged periods of apnoeas, as well as during hypoxia (P-O2 <= 50 mmHg), when the fish changed from gill ventilation to air-breathing. Q increased significantly during gill ventilation compared to apnoea in aerated water through a significant increase in both fH and VS. PCV and MCFP also increased significantly. During hypoxia, when the animals surface to ventilate air, we found a marked rise in fH, PCV, MCFP, Q and VS, whereas PDA decreased significantly. Simultaneous increases in PCV and MCFP in aerated, as well as in hypoxic water, suggests that the venous system plays an important regulatory role for cardiac filling and VS in this species. In addition, we investigated adrenergic regulation of the venous system through bolus infusions of adrenergic agonists (adrenaline, phenylephrine and isoproterenol; 2 mu g kg(-1)). Adrenaline and phenylephrine caused a marked rise in PCV and MCFP, whereas isoproterenol led to a marked decrease in PCV, and tended to decrease MCFP. Thus, it is evident that stimulation of both alpha- and beta-adrenoreceptors affects venous tone in S. marmoratus.
Resumo:
The jeju is a teleost fish with bimodal respiration that utilizes a modified swim bladder as an air-breathing organ (ABO). Like all air-breathing fish studied to date, jeju exhibit pronounced changes in heart rate (f(H)) during air-breathing events, and it is believed that these may facilitate oxygen uptake (M-O2) from the ABO. The current study employed power spectral analysis (PSA) of f(H) patterns, coupled with instantaneous respirometry, to investigate the autonomic control of these phenomena and their functional significance for the efficacy of air breathing. The jeju obtained less than 5% of total M-O2 (M-tO2) from air breathing in normoxia at 26 degrees C, and PSA of beat-to-beat variability in fH revealed a pattern similar to that of unimodal water-breathing fish. In deep aquatic hypoxia (water P-O2=1 kPa) the jeju increased the frequency of air breathing (f(AB)) tenfold and maintained M-tO2 unchanged from normoxia. This was associated with a significant increase in heart rate variability (HRV), each air breath (AB) being preceded by a brief bradycardia and then followed by a brief tachycardia. These f(H) changes are qualitatively similar to those associated with breathing in unimodal air-breathing vertebrates. Within 20 heartbeats after the AB, however, a beat-to-beat variability in f(H) typical of water-breathing fish was re-established. Pharmacological blockade revealed that both adrenergic and cholinergic tone increased simultaneously prior to each AB, and then decreased after it. However, modulation of inhibitory cholinergic tone was responsible for the major proportion of HRV, including the precise beat-to-beat modulation of f(H) around each AB. Pharmacological blockade of all variations in f(H) associated with air breathing in deep hypoxia did not, however, have a significant effect upon f(AB) or the regulation of M-tO2. Thus, the functional significance of the profound HRV during air breathing remains a mystery.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To assess cardiac morphology and function by means of echocardiograms of children with obstructad breathing while asleep.Methods: the study enrolled 40 children of both sexes, aged from 3 to 11 years; 30 of them had obstructed breathing during sleep (group I) and 10 children were healthy controls (group II). The two groups were similar in terms of sex, age, weight and height. The 40 children underwent echocardiogram, viewing all four chambers during systole and diastole, paying special attention to the right ventricle (RV). These data were compared by means of Student's t test (p < 0.05).Results: In group I, increased diameter and area of the right ventricle were observed during both systole and diastole. There was less variation in RV area between systole and diastole. Reduced left ventricle (LV) diastolic diameter was also observed, together with reduced ejection fraction and reduced contraction.Conclusions: the morphological and functional cardiac abnormalities observed in the RV and LV suggest that, in children, obstructed breathing during sleep can lead to cardiovascular repercussions. These abnormalities may expose these children to increased anesthetic and surgical risks.