20 resultados para Moroccan continental margin
Resumo:
The c. 600 Ma Brasiliano Borborema Province of NE Brazil comprises a complex collage of Precambrian crustal blocks cut by a series of continental-scale shear zones. The predominant basement rocks in the province are 2.1-2.0 Ga Transamazonian gneisses of both juvenile and reworked nature. U-Pb zircon and Sm-Nd whole-rock studies of tonalite-trondhjemite-granodiorite basement gneisses in the NW Ceará or Médio Coreaú domain in the northwestern part of the Borborema Province indicate that this represents a continental fragment formed by 2.35-2.30 Ga juvenile crust. This block has no apparent genetic affinity with any other basement gneisses in the Borborema Province, and it does not represent the tectonized margin of the c. 2.1-2.0 Ga São Luis Craton to the NW. The petrological and geochemical characteristics, as well as the Nd-isotopic signatures of these gneisses, are consistent with their genesis in an island arc setting. This finding documents a period of crustal growth during a period of the Earth's history which is known for its tectonic quiescence and paucity of crust formation. © Geological Society of London 2009.
Resumo:
This work aimed at describing the Neoproterozoic evolution of a Southern Brasília Fold Belt segment, in Tapira area (southwest of Minas Gerais state, Brazil), using detailed geologic mapping. This area, the Canastra Group type-area, has showed great tectonic and stratigraphic complexities unlike the simplicity suggested in previous works. From recognizing the main tectonic discontinuities, it was possible to subdivide the area into some domains. In the west domain, they were individualized in tectonic sheet I, marked by pelitic rocks and pelitic-graphite rocks with psammitic intercalations, and II, pelitic rocks with psammitic and mafic-ultramafic intercalations overlapped by gneisses. In the east domain, a group of three tectonic sheets was defined, in which, in the two lower tectonic sheets, pelitic and pelitic-graphite rocks with psammitic rock intercalations prevailed, which is different in metamorphic conditions. The lower tectonic sheet is marked by mineralogical associations with muscovite + chlorite + quartz ± graphite ± albite, without biotite; however, the superior one is with muscovite + quartz + garnet ± chlorite ± biotite ± chloritoid ± graphite ± albite. In the upper tectonic sheet, pelitic rocks with local contributions of psammitic and ultramafics rocks occur. In the south domain, psammitic rocks basically occur with contributions of pelitics and rudaceous rocks, where the preservation of textures and sedimentary structures is common. Rocks of the several domains are interpreted as part of a passive continental margin basin, located in the western margin of the São Francisco paleocontinent. Thus, the south domain rocks would represent the facies of proximal platform; rocks of the lower and middle tectonic sheets (east domain) and of the tectonic sheet I (west domain) are of facies distal platform; and the ones from the upper tectonic sheet (east domain) and tectonic sheet II (west domain) were acknowledged as deposited in an environment of continental shelf and/or oceanic seafoor.
Resumo:
Far from the continental margin, drainage basins in Central Amazonia should be in topographic steady state; but they are not. Abandoned remnant fluvial valleys up to hundreds of square kilometers in size are observed throughout Amazonia, and are evidence of significant landscape reorganization. While major Late Miocene drainage shifts occurred due to initiation of the transcontinental Amazon River, local landscape change has remained active until today. Driven either by dynamic topography, tectonism, and/or climatic fluctuations, drainage captures in Amazonia provide a natural experiment for assessing the geomorphic response of low-slope basins to sudden, capture related base-level falls. This paper evaluates the timing of geomorphic change by examining a drainage capture event across the Baependi fault scarp involving the Cuieiras and TarumA-Mirim River basins northwest of the city of Manaus in Brazil. A system of capture-related knickpoints was generated by base-level fall following drainage capture; through numerical modeling of their initiation and propagation, the capture event is inferred to have occurred between the middle and late Pleistocene, consistent with other studies of landscape change in surrounding areas. In low-slope settings like the Amazon River basin, base-level fall can increase erosion rates by more than an order of magnitude, and moderate to large river basins can respond to episodes of base-level fall over timescales of tens to hundreds of thousands of years. Copyright (c) 2013 John Wiley & Sons, Ltd.
Caracterização estrutural do Lineamento de Piúma e sua influência na porção norte da Bacia de Campos
Resumo:
The detailed study of the Brazilian continental margin basins became possible with the advancement of geophysical tools, with emphasis on seismic reflection. Characterizing the structural and stratigraphic elements of Brazil’s marginal basins they realized that there was a relationship with structures present on the adjacent continental basement. So many works began to be made to understand this relationship and know the major factors that influenced the evolution of the continental margin. The study area of this work includes the northern portion of the Campos Basin and the continental outcropping adjacent areas, which corresponds to the northern of Rio de Janeiro state and the southern of Espirito Santo state. This area stands an important structural feature of NW-SE direction with a projection to the Campos Basin called Lineamento de Piúma. The outcropping basement rocks belongs to the Ribeira Belt which was bonded to other mobile bands forming the continent Western Gondwana during the Brasiliano Cycle, which later fragmented giving rise to the Atlantic Ocean. The opening of the ocean results on the formation of the marginal basins of Brazil. These basins have continental, transitional and marine facies. On Campos Basin the continental phase resulted on the formation of horsts and grabens bounded by synthetic and antithetic faults. Continuing rifting formed the saline lakes that deposited siliciclastic and carbonate sediments. The transitional phase resulted on thick packages consist of evaporites (halite and anhydrite) that was deposited in lagoon environment, tectonically quiet arid and semi-arid. The marine phase it deposited siliciclastic and carbonate in the Campos Basin resulting in shales, marls, limestones, ritmito, turbidites, sandstones and others. The objective of this study is to investigate the possible continuation... (Complete abstract click electronic access below)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE