162 resultados para Monitoring the grinding process
Resumo:
Carbon fiber reinforced carbon composites can be made by iterative liquid impregnation or gas phase carbon deposition routes. In both cases, at the final processing stage the carbon fiber is embedded in carbon matrix which results in unique properties such as low density, high thermal conductivity and thermal shock resistance, low thermal expansion and high modulus, in relation to other refractory materials. In the present study assembled three-directional and four-directional preforms, having 50% volume of pores, were densified by iterative cycles of thermoset resin impregnation followed by pyrolysis under inert atmosphere, until appropriate densities were achieved. The thermoset resin is converted in a carbon matrix during pyrolysis. The iterative manufacturing process of the carbon fiber reinforced carbon composites is evaluated by means of nondestructive techniques based on X-ray computed tomography and electrical resistivity. X-ray computed tomography gives a general mapping view of the filling pores of the preforms which impacts results of the electrical resistivity. After six processing cycles and heat treatments up to 2000?, the final densities of the three-directional and four-directional carbon fiber reinforced carbon composites were 1.16g/cm(3) and an electrical resistivity of approximate to 0.07m. The configuration of preforms, three-directional or four-directional, did not alter the densification profile, in terms of increasing density and reducing porosity during the processing cycles.
Resumo:
The work reported here involved an investigation into the grinding process, one of the last finishing processes carried out on a production line. Although several input parameters are involved in this process, attention today focuses strongly on the form and amount of cutting fluid employed, since these substances may be seriously pernicious to human health and to the environment, and involve high purchasing and maintenance costs when utilized and stored incorrectly. The type and amount of cutting fluid used directly affect some of the main output variables of the grinding process which are analyzed here, such as tangential cutting force, specific grinding energy, acoustic emission, diametrical wear, roughness, residual stress and scanning electron microscopy. To analyze the influence of these variables, an optimised fluid application methodology was developed (involving rounded 5, 4 and 3 turn diameter nozzles and high fluid application pressures) to reduce the amount of fluid used in the grinding process and improve its performance in comparison with the conventional fluid application method (of diffuser nozzles and lower fluid application pressure). To this end, two types of cutting fluid (a 5% synthetic emulsion and neat oil) and two abrasive tools (an aluminium oxide and a superabrasive CBN grinding wheel) were used. The results revealed that, in every situation, the optimised application of cutting fluid significantly improved the efficiency of the process, particularly the combined use of neat oil and CBN grinding wheel. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The world tendency is the increase of the productivity and the production of pieces more and more sophisticated, with high degree of geometric and dimensional tolerances, with good surface finish and low cost. Rectification is responsible for the final finish in the machining process of a material. However, damages generated in this production phase affect all the resources used in the previous processes. Great part of the problems happennig in the rectification process is due to the enormous temperature generated in this activity because of the machining conditions. The dive speed, which is directly related to the productivity, is considered responsible for the damages that occur during rectification, limiting its values to those that do not cause such damages. In this work, through the variation of the dive speed in the process of cylindrical grinding of type ABNT D6 steel, rationalizing the application of two cutting fluids and using a CBN (cubic boron nitrate) abrasive wheel with vitrified blond, the influence of the dive speed on the surface damages of hardened steels was evaluated. The results allowed to say that the dive speed, associated to an efficient cooling and lubrication, didn't provoke thermal damages (including heated zones, cracks and tension stresses) to the material. Residual stresses and the roughness of rectified materials presented a correlation with the machining conditions. The work concluded that it is possible to increase the productivity without provoking damages in the rectified components.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
A new chart based on sample variances for monitoring the covariance matrix of multivariate processes
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this article we consider a control chart based on the sample variances of two quality characteristics. The points plotted on the chart correspond to the maximum value of these two statistics. The main reason to consider the proposed chart instead of the generalized variance |S| chart is its better diagnostic feature, that is, with the new chart it is easier to relate an out-of-control signal to the variables whose parameters have moved away from their in-control values. We study the control chart efficiency considering different shifts in the covariance matrix. In this way, we obtain the average run length (ARL) that measures the effectiveness of a control chart in detecting process shifts. The proposed chart always detects process disturbances faster than the generalized variance |S| chart. The same is observed when the size of the samples is variable, except in a few cases in which the size of the samples switches between small size and very large size.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this article, we consider the synthetic control chart with two-stage sampling (SyTS chart) to control the process mean and variance. During the first stage, one item of the sample is inspected; if its value X, is close to the target value of the process mean, then the sampling is interrupted. Otherwise, the sampling goes on to the second stage, where the remaining items are inspected and the statistic T = Sigma [x(i) - mu(0) + xi sigma(0)](2) is computed taking into account all items of the sample. The design parameter is function of X-1. When the statistic T is larger than a specified value, the sample is classified as nonconforming. According to the synthetic procedure, the signal is based on Conforming Run Length (CRL). The CRL is the number of samples taken from the process since the previous nonconforming sample until the occurrence of the next nonconforming sample. If the CRL is sufficiently small, then a signal is generated. A comparative study shows that the SyTS chart and the joint X and S charts with double sampling are very similar in performance. However, from the practical viewpoint, the SyTS chart is more convenient to administer than the joint charts.
Resumo:
This research aimed to analyze the viability of the minimum quantity of lubricant (MQL) technique towards different methods of lubri-refrigeration in surface grinding of steel, considering process quality, wheel life and the viability of using cutting fluids The proposal methods were the conventional (abundant fluid flow), the minimum quantity lubrication (MQL) and the optimized method with Webster nozzle (rounded) This analysis was carried out in equal machining conditions, through the assessment of variables such as grinding force, surface roughness, G ratio (volume of removed material/volume of wheel wear), and microhardness The results showed the possibility of improvement of the grinding process Besides, there is the opportunity for production of high quality workpieces with lower costs The MQL technique showed efficiency in machining with lower depths of cut The optimized method with Webster nozzle applies the fluid in a rational way, without considerable waste Hence, the results show that industry can rationalize and optimize the application of cutting fluids, avoiding inappropriate disposal, inadequate use and consequently environment pollution
Resumo:
In this article, we propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample vat-lances of the two quality characteristics, shortly VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar are faster detection of process changes and better diagnostic feature, that is, with the VMAX statistic It is easier to identify the out-of-control variable.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Results are reported of the behaviour of the plane tangential grinding process using diamond grinding wheels. Grinding performance is analysed in terms of the wear behaviour of the wheel in the grinding of ceramic. Discussion of the results concentrates on the wear mechanism of the diamond wheel and the process of material removal.
Resumo:
This work uses a monitoring system based on a PC platform, where the acoustic emission and electric power signals generated during the grinding process are used to investigate superficial burning occurrence in a surface grinding operation using two types of steel, three grinding conditions and an Al203 vitrified grinding wheel. Acoustic emission signals on the workpiece and grinding power were measured during a surface plunge operation until the grinding burn happened. From the results the standard deviation of the acoustic emission signal and the maximum electric power were calculated for each grinding pass. The proposed DPO parameter is the product between the power level and acoustic emission standard deviation. The results show that both signals can be used for burning detection, and the parameter DPO is the best indicator for the burning studied in this work. This can be explained by the high dispersion of the acoustic emission RMS level associated to the high power consumption when the grinding wheel lose its sharpness.
Analysis of diametrical wear of grinding wheel and roundness errors in the machining of steel VC 131
Resumo:
Due to the high industrial competitiveness, the rigorous laws of environmental protection, the necessary reduction of costs, the mechanical industry sees itself forced to worry more and more with the refinement of your processes and products. In this context, can be mentioned the need to eliminate the roundness errors that appear after the grinding process. This work has the objective of verifying if optimized nozzles for the application of cutting fluid in the grinding process can minimize the formation of the roundness errors and the diametrical wear of grinding wheel in the machining of the steel VC 131 with 60 HRc, when compared to the conventional nozzles. These nozzles were analyzed using two types of grinding wheels and two different cutting fluids. Was verified that the nozzle of 3mm of diameter, integral oil and the CBN grinding wheel, were the best options to obtain smaller roundness errors and the lowest diametrical wears of grinding wheels.