78 resultados para Molds (Fungi)
Resumo:
Inteins or internal proteins are coding sequences that are transcribed and translated with flanking sequences (exteins). After translation, the inteins are excised by an autocatalytic process and the host protein assumes its normal conformation and develops its expected function. These parasitic genetic elements have been found in important, conserved proteins in all three domains of life. Most of the eukaryotic inteins are present in the fungi kingdom and the PRP8 intein is one of the most widespread inteins, occurring in important pathogens such as Cryptococcus neoformans (varieties grubii and neoformans), Cryptococcus gattii, Histoplasma capsulatum and Paracoccidioides brasiliensis. The knowledge of conserved and non-conserved domains in inteins have opened up new opportunities for the study of population variability in pathogenic fungi, including their phylogenetic relationships and recognition or diagnoses of species. Furthermore, inteins in pathogenic fungi should also be considered a promising therapeutic drug target, since once the autocatalytic splicing is inhibited, the host protein, which is typically vital, will not be able to perform its normal function and the fungal cell will not survive or reproduce.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The genus Actinocephalus comprises 25 species and is restricted to Brazil, occurring mainly in the Espinhaco Mountains of Minas Gerais and Bahia States. Previous anatomical studies have reported the occurrence of intracellular papillae in the Actinocephalus roots, without dealing with their ultrastructure and function. The purpose of this paper is to investigate the structure, the composition and the probable function of the intracellular papillae of Actinocephalus roots, based on light microscopy, transmission electron microscopy and histochemical tests. The intracellular papillae occurred in all root tissues, from the rhizodermis to the vascular cylinder; they presented different forms and sizes and, ultrastructurally, they corresponded to material deposited between the cell wall and the plasma membrane. The histochemical tests carried out were positive for cellulose, pectin and callose. The intracellular papillae are responses of the plant cells to the interaction with fungi. They work as a physical barrier restricting fungal penetration, and they may also favor the supply of water and nutrients to the plant, since they increase root absorption surface. This might explain why the species of Actinocephalus are among the tallest Eriocaulaceae despite their reduced radicular system and the nutritional deficiency of the soil in which they grow. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this research was to investigate xylanase production by filamentous fungi (Trichoderma viride) to determine the best cultivation conditions in the process, aiming toward optimization of enzyme production. The best temperature, as well as the best carbon source, for biomass production was determined through an automated turbidimetric method (Bioscreen-C). The enzyme activity of this fungus was separately evaluated in two solid substrates (wheat and soybean bran) and in Vogel medium, pure and by adding other carbon sources. Temperature effects, cultivation time, and spore concentrations were also tested. The best temperature and carbon source for enzyme and biomass production was 25 C and sorbitol, respectively. Maximum xylanase activity was achieved when the fungus was cultivated in wheat bran along with sorbitol (1%, w/v), using a spore concentration of 2 x 10(6) spores. mL(-1), pH 5.0, for 144 h cultivation. The study demonstrated not only the importance of the nature of the substrate in obtaining a system resistant to catabolic repression, but also the importance of the culture conditions for biosynthesis of this enzyme. T. viride showed a high potential for xylanase production under the conditions presented in these assays.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi - Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 - using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)