28 resultados para Modal domain
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into quasi-modes a, b and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km.
Resumo:
The objective of this letter is to propose an alternative modal representation of a nontransposed three-phase transmission line with a vertical symmetry plane by using two transformation matrices. Initially, Clarke's matrix is used to separate the line into components a, 0, and zero. Because a and zero components are not exact modes, they can be considered as being a two-phase line that will be decomposed in its exact modes by using a 2 x 2 modal transformation matrix. This letter will describe the characteristics of the two-phase line before mentioned. This modal representation is applied to decouple a nontransposed three-phase transmission line with a vertical symmetry plane whose nominal voltage is 440 kV.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes alpha, beta and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a nontransposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. ©2006 IEEE.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes α and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. © 2006 IEEE.
Resumo:
Some constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE.
Resumo:
This paper describes a computational model based on lumped elements for the mutual coupling between phases in three-phase transmission lines without the explicit use of modal transformation matrices. The self and mutual parameters and the coupling between phases are modeled using modal transformation techniques. The modal representation is developed from the intrinsic consideration of the modal transformation matrix and the resulting system of time-domain differential equations is described as state equations. Thus, a detailed profile of the currents and the voltages through the line can be easily calculated using numerical or analytical integration methods. However, the original contribution of the article is the proposal of a time-domain model without the successive phase/mode transformations and a practical implementation based on conventional electrical circuits, without the use of electromagnetic theory to model the coupling between phases. © 2011 IEEE.
Resumo:
Modal analysis is widely approached in the classic theory of transmission line modeling. This technique is applied to model the three-phase representation of conventional electric systems taking into account their self and mutual electrical parameters. However the methodology has some particularities and inaccuracies for specific applications which are not clearly described in the basic references of this topic. This paper provides a thorough review of modal analysis theory applied to line models followed by an original and simple procedure to overcome the possible errors embedded in the modal decoupling through the three-phase system modeling. © 2012 IEEE.
Resumo:
A transmission line digital model is developed direct in the phase and time domains. The successive modal transformations considered in the three-phase representation are simplified and then the proposed model can be easily applied to several operation condition based only on the previous knowing of the line parameters, without a thorough theoretical knowledge of modal analysis. The proposed model is also developed based on lumped elements, providing a complete current and voltage profile at any point of the transmission system. This model makes possible the modeling of non-linear power devices and electromagnetic phenomena along the transmission line using simple electric circuit components, representing a great advantage when compared to several models based on distributed parameters and inverse transforms. In addition, an efficient integration method is proposed to solve the system of differential equations resulted from the line modeling by lumped elements, thereby making possible simulations of transient and steady state using a wide and constant integration step. © 2012 IEEE.
Resumo:
This article shows a transmission line model developed directly in the phase domain. The proposed model is based on the relationships between the phase currents and voltages at both the sending and receiving ends of a single-phase line. These relationships, established using an ABCD matrix, were extended to multi-phase lines. The proposed model was validated by using it to represent a transmission line during short-and open-circuit tests. The results obtained with the proposed model were compared with results obtained with a classical model based on modal decomposition. These comparisons show that proposed model was correctly developed. © 2013 Taylor and Francis Group, LLC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper aims to contribute with the studies on the modal verb poder as an auxiliary verb, by analyzing, from a functionalist perspective, how it behaves, both in Brazilian Portuguese and Spanish, in self-help discourse. In order to do so, we have resorted to the classification of modalities by Hengeveld (2004), with special focus on the notions of target of evaluation and domain of evaluation.