27 resultados para Milling process
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
The technological expansion and market manufactured wood as wood paneling makes the research of processes involving this material are increasingly necessary . The present study examines the milling process MDF - fiberboard with average density endmill with helical teeth , with the analysis of the surface finish by evaluating the surface roughness ( Ra) and analysis of the power consumption . We analyzed three types of cuts in milling : concordant , discordant , and cut top . We used 5 rpm (6000 , 8000 , 10000 , 12000 and 14000 RPM) , establishing five-speed cutting, 301 , 402 ,502, 603 and 703 m / min respectively. Five forward speeds and 4, 6, 8, 10 and 12 m / min. Each condition was repeated six times , totaling 180 tests. The results of roughness were obtained from rugosimeter data and the power consumption were obtained by Hall-effect sensor . These results were statistically analyzed using analysis of variance and Tukey test . Finally it was concluded that there are few significant differences between the results themselves vary roughness when cutting speeds and feed and no major differences in power consumption . The best surface quality and lower power consumption were for cutting speed of 703 m / min . To varying forward speed , the speed of 4 m / min showed better surface quality and lower power consumption
Resumo:
The process of milling wood is widely used in operations such as planing and manufacturing frames . Machines like planers , desengrossadeiras , routers , moldureiras and machining centers employ the milling process for cutting wood . In this work the process of milling CNC machining center of Eucalyptus grandis was studied because this is very much used in furniture , but without consistent studies on this process . This work a CNC machining center brand TECH Z1 for analysis of surface quality ( Ra ) in relation to the variation of cutting speed and feed in concordant and discordant tangential milling and face milling was used . We used Eucalyptus grandis . Four forward speeds ( 3, 5 , 7, and 9 m / min ) for four shear rates ( 5,9; 8,4; 10,9 and 13,4 m/s ) were used. Was used for testing a cutter finishing top speed steel with helical teeth 16mm in diameter . 6 repetitions for each test condition were performed . From the results it was observed that the best results for roughness Vc = 10,9 m / s were obtained for the milling concordant with the forward speed Vf = 7 m / min. As for Vf = 5 m / min the best finish was achieved with Vc = 8,4 m /s in discordant for milling . The feedrate and cutting influenced the roughness . The senses of concordant and discordant and cut the top and the top had a significant difference in roughness
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The intermittent milling and dynamic steeping (IMDS) process is an alternative method developed for wet milling of maize. In this process, the steeping stage can be reduced to 5 h by soaking maize in water at 60°C for 2 h and cracking the kernels to remove solution components diffusional barriers with minimum germ damage. Maize was dynamically steeped in solutions with 0.0, 0.1, and 0.2% sulphur dioxide (SO2) and 0.00, 0.55% lactic acid. Germ recovery, germ damage, fibre in germ, oil content and uncracked kernels were determined. A conventional steeping procedure was also performed. Germ recovery was higher for all tests using both SO2 and lactic acid than for the others with best germ yield for concentrations of 0.2% SO2 and 0.55% lactic acid. Germ damage ranged from 7.4 to 18.2% for all tests. The presence of lactic acid in the steeping solution decreased the amount of fibre in germ fraction. Germ oil content ranged from 39.3% (0-0% SO2, 0.55% lactic acid) to 44.0% (0.2% SO2, 0.55% lactic acid) for all treatments using IMDS. The smallest difference was 5.5% between IMDS (0.2% SO2, 0.55% lactic acid) and the conventional 36 h steeping process. An average of 1.3% of kernels remained uncracked after IMDS process. © 2002 Silsoe Research Institute. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
This letter reports on a process to prepare nanostructured PbTiO3 (PT) at room temperature with photoluminescence (PL) emission in the visible range. This process is based on the high-energy mechanical milling of ultrafine PbTiO3 powder. The results suggest that high-energy mechanical milling modifies the particle's structure, resulting in localized states in an interfacial region between the crystalline PT and the amorphous PT. These localized states are believed to be responsible for the PL obtained with short milling times. When long milling times are employed, the amorphous phase that is formed causes PL behavior. An alternative method to process nanostructured wide-band-gap semiconductors with active optical properties such as PL is described in this letter. (C) 2001 American Institute of Physics.
Resumo:
An accurate estimate of machining time is very important for predicting delivery time, manufacturing costs, and also to help production process planning. Most commercial CAM software systems estimate the machining time in milling operations simply by dividing the entire tool path length by the programmed feed rate. This time estimate differs drastically from the real process time because the feed rate is not always constant due to machine and computer numerical controlled (CNC) limitations. This study presents a practical mechanistic method for milling time estimation when machining free-form geometries. The method considers a variable called machine response time (MRT) which characterizes the real CNC machine's capacity to move in high feed rates in free-form geometries. MRT is a global performance feature which can be obtained for any type of CNC machine configuration by carrying out a simple test. For validating the methodology, a workpiece was used to generate NC programs for five different types of CNC machines. A practical industrial case study was also carried out to validate the method. The results indicated that MRT, and consequently, the real machining time, depends on the CNC machine's potential: furthermore, the greater MRT, the larger the difference between predicted milling time and real milling time. The proposed method achieved an error range from 0.3% to 12% of the real machining time, whereas the CAM estimation achieved from 211% to 1244% error. The MRT-based process is also suggested as an instrument for helping in machine tool benchmarking.
Resumo:
Goal Programming (GP) is an important analytical approach devised to solve many realworld problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which the more/higher, the better and the less/lower, the better in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases. © 2013 Elsevier Inc.