115 resultados para Microwave assisted


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin oxide (SnO) powders were obtained by the microwave-assisted hydrothermal synthesis technique using SnCl2 center dot 2H(2)O as a precursor. By changing the hydrothermal processing time, temperature, the type of mineralizing agent (NaOH, KOH or NH4 OH) and its concentration, SnO crystals having different sizes and morphologies could be achieved. The powders were characterized by X-ray diffraction (X-ray), Field Emission Scanning Electron Microscopy (FE-SEM), High Resolution Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED). The results showed that plate-like form is the characteristic morphology of growth and the TEM analyses indicate the growth direction as (200). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work CdMoO 4 nanoparticles were obtained under hydrothermal conditions using microwave radiation (2.45 GHz) (MH) at 100°C for different times. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure CdMoO 4 phases were obtained. FEG-SEM powders present large-scale and homogeneous particles with microspheres-like morphology. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) emission in the green wavelength range of 540-546 nm. Photocatalytic activity of CdMoO 4 nanocrystals was examined by monitoring the degradation of rhodamine B dye.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, zinc oxide powders were synthesized by microwave-assisted hydrothermal method in basic medium. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure ZnO phases were obtained after MH processing performed at 130°C/ 1h. FEG-SEM micrographs reveals that these nanostructures are made up of ZnO plates. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) in the different zinc powders. An orange PL emission when excited by 350 nm wavelength at room temperature was observad in the different powders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystalline terbium-doped indium hydroxide structures were prepared by a rapid and efficient Microwave-Assisted Hydrothermal (MAH) method. Nanostructures were obtained at a low temperature. FE-SEM images confirm that these samples are composed of 3D nanostructures. XRD, optical diffuse reflectance and photoluminescence (PL) measurements were used to characterize the products. Emission spectra of terbium-doped indium hydroxide (In(OH)3:xTb 3+) samples under excitation (350.7 nm) presented broad band emission referent to the indium hydroxide matrix and 5D4 → 7F6, 5D4 → 7F 5, 5D4 → 7F4, and 5D4 → 7F3 terbium transitions at 495, 550, 590 and 627 nm, respectively. Relative intensities of the Tb 3+ emissions increased as the concentration of this ion increased from 0, 1, 2, 4 and 8 mol%, of Tb3+, but the luminescence is drastically quenched for the In(OH)3 matrix. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we report the development of an efficient and rapid microwave assisted solvothermal (MAS) method to prepare wurtzite ZnS nanoparticles at 413 K using different precursors. The materials obtained were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (MET) ultraviolet-visible (UV-vis) and photoluminescence (PL) measurements. The structure, surface chemical composition and optical properties were investigated as a function of the precursor. In addition, effects as well as merits of microwave heating on the processing and characteristics of ZnS nanoparticles obtained are reported. The possible formation mechanism and optical properties of these nanoparticles were also reported. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A shift of the photoluminescence (PL) emission was observed in ZnS prepared by microwave assisted solvothermal method with the increase of the time in microwave. In this work we reported a study of the optical behavior linking with the structural disorder according to XRD and FEG-TEM results. The reduction of intrinsic defects in the lattice is responsible for the decrease of electronic levels in the band gap changing the PL profile. This effect was confirmed by electronic structure calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the work presented here, Ce0.97Cu0.03O2 nanoparticles were synthesized by a microwave-assisted hydrothermal method under different synthesis temperatures. The obtained nanoparticles were tested as catalysts in preferential oxidation of CO to obtain CO-free H2 (PROX reaction). The samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), electron paramagnetic resonance spectroscopy (EPR) and temperature-programmed reduction (TPR). X-ray diffraction measurements detected the presence of pure cubic CeO2 for all synthesized samples. TEM images of the Ce0.97Cu0.03O2 nanoparticles revealed that samples synthesized at 80°C are composed mainly of nanospheres with an average size of 20 nm. The formation of some nanorods with an average diameter of 8 nm and 40 nm in length, and the size reduction of the nanoparticles from 20 to approximately 15 nm is observed with increasing synthesis temperature. EPR spectra indicated that copper is found well dispersed in sample synthesized at 160°C, located predominant in surface sites of ceria. For samples synthesized at 80 and 120°C, the species are less dispersed than in the other one, resulting in the formation of Cu2+−Cu2+ dimmers at the surface of ceria. TPR profiles presented two reduction peaks, one below 400°C attributed to the reduction of different copper species and a second peak around 800°C attributed to the reduction of Ce4+→ Ce3+ species located in the volume of the nanoparticles. The peak related to the reduction of copper species shifts to lower temperatures with increasing synthesis temperature, i.e., the sample synthesized at 160°C is more easily reduced than the ones synthesized at 120 and 80°C. The nanoparticles showed active as catalysts for the CO-PROX reaction. The microwave-assisted method revealed efficient for the synthesis of Ce0.97Cu0.03O2 nanoparticles with copper species selective for the CO-PROX reaction, which reaches CO conversions up to 92% for the sample synthesized at 160°C.