35 resultados para Microcontrolador Arduino


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patente de invenção de um suporte para acoplamento e tração de cadeira de rodas mecanomanual que compreende um primeiro módulo (10) que inclui uma estrutura simplificada capaz de instalação em diversos modelos de cadeira de rodas mecanomanuais (100) e um segundo módulo (20) que inclui um equipamento automotor acoplado ao primeiro módulo (10) de forma rápida e segura pelo próprio usuário controlado por um microcontrolador dotado de um sistema de controle PWM que gera um sinal eletrônico transmitido pelo microcontrolador ao driver de potência e circuitos independentes reguladores de tensão para acionamento do motor (22), incluindo um acelerador indutivo instalado no guidão (25) cujo sinal analógico é convertido por um conversor analógico-digital (A/D) e encamnhiando ao microcontrolador.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: to create a purchasing system for optimizing a low cost device fabrication itself. Method: For this purpose was designed a system which is powered by a 12V battery center. The full bridge of "Wheatstone" is powered by the central battery set to 9V. Results: The sign of the strain has a range of 0 to 30 mV which is amplified filtered by a signal conditioner own manufacturing using an LM 324. The electrical signal then passes to vary from 0 to5V which will be processed in an analog input of PIC microcontroller. Tests for the registration and interpretation of data are through software MyOpenLab. Conclusion: The work is in progress and initial results suggest that the system will be able to measure muscular strength accurately and cost-effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study on the development of a manufacturing system of printed circuit boards through copper milling. An advantage of this system is the replacement of chemical processes by physical process presenting a sustainable solution. The paper uses programs that will generate G-code needed to establish the coordinates where the milling forms the tracks. After obtaining the code, it will be transformed into steps that will be sent through the serial port to the microcontroller and the serial communication control will be in software. After obtaining information the microcontroller will execute the movement of the stepper motors through their drivers, H-bridge, the microcontroller also drives the spindle motor responsible for rotating the grinding tool, using a driver with a optocoupler and TRIAC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work develops a residential automation system controlled by PIC microcontroller connected to a domestic network using the TCP/IP protocol. This was motivated by the viability of building an automation system to control basic elements of a house with low cost, which cannot be found nowadays. Initially is presented a brief history of the automation systems and an introduction about PIC microcontrollers. Afterwards is presented an overview of the system to be implemented. Then it is shown a suggested circuit and the sensor and actuator elements as well as the software to manage the system, this was all build and test in the laboratory. In the end are the results obtained from the prototype, like the energy consumption, the cost, efficiency and reliability

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to concerns about rational use of energy, several alternative technologies of power generation appeared, including the conversion of solar energy into electrical energy by photovoltaic panels. In low-income households, the refrigerator represents considerable impact on the electric bill, since it requires constant power given its use in food preservation. It is possible to reduce this share, with the use of an alternative energy source. This work presents a timed switching electronic system, which allows commercial equipment that is not affected by short interruptions in the power supply to use a photovoltaic panel as a source of alternative energy, which usually do not provide energy continuously. Switching is made automatically in case of low incidence of sunlight, and without any form of energy storage. Between each switching, there is a dead time without power supply, therefore preventing the use of synchronizers circuits between the photovoltaic panel and the public power grid. A circuit containing a 80C31 microcontroller is used to control the system’s switching. The photovoltaic panel’s voltage inverter is in H bridge configuration, and is also controlled by the microcontroller through Pulse Width Modulation, which makes use of preprogrammed tables to generate the control signals of the power transistors. Through the use of software simulations, the proposed system was tested, which is capable of supplying intermittent single-phase loads. The simulations indicates that the project developed in this paper can be assembled into a prototype and be tested under real operating conditions, as long as the scaling of components, the characteristics of the photovoltaic panel to be used, and the project involved load are taken into account