91 resultados para Metal Surface Hardening


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface treatments have been used to modify the surface of titanium alloys. The purpose of this study is to evaluate the surface of Ti-30Ta alloy after biomimetic approach associated to antibiotic incorporation. The ingots were obtained in arc melting furnace, treated and cold-worked by swaging. The surface treatment was performed in two steps: biomimetic treatment and antibiotic incorporation. For biomimetic treatment, first an alkaline treatment (NaOH 1M at 60ºC) was performed, followed by heat treatment and immersion in SBFx5 (Simulated Body Fluid) for a period of 24 hours. In order to incorporate the antibiotic, samples were immersed in a solution formed by drugs plus SBFx5 for 48 hours. The sample surfaces were analyzed by scanning electron microscopy (SEM), X-Ray diffraction (XRD), atomic force microscopy (AFM) and contact angle measurements. The release of antibiotic from coated implants was measured in phosphate buffer saline at pH 7.4 by using UV/VIS spectrometry. Results have shown changes on the surface after incorporating the drug, which is gradually co-precipitated with the Ca-P crystals, forming a uniform and rough layer on the metal surface

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Capacitance spectra of thin (< 200 nm) Alq(3) electron-only devices have been measured as a function of bias voltage. Capacitance spectra exhibit a flat response at high frequencies (> 10(3) Hz) and no feature related to the carrier transit time is observed. Toward low frequencies the spectra reach a maximum and develop a negative excess capacitance. Capacitance response along with current-voltage (J-V) characteristics are interpreted in terms of the injection of electrons mediated by surface states at the metal organic interface. A detailed model for the impedance of the injection process is provided that highlights the role of the filling/releasing kinetics of energetically distributed interface states. This approach connects the whole capacitance spectra to the occupancy of interface states, with no additional information about bulk trap levels. Simulations based on the model allow to derive the density of interface states effectively intervening in the carrier injection (similar to 1.5 x 10(12) cm (2)). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, a simple route to prepare carbon supported Pt/C, Pt:Ru/C, Pt:Mo/C and Pt:Ru:Mo/C catalysts is reported. The electrochemical properties of the several carbon materials used as substrates in the absence and in the presence of supported platinum and platinum alloys catalysts were investigated using cyclic voltammetry and employing the thin porous coating electrode technique. The activity of the dispersed catalysts composed of Pt/C with respect to the oxygen reduction and of alloy/C with respect to methanol oxidation was investigated using steady state polarization measurements. The performance with respect to the oxygen reduction reaction of the Pt/C catalyst prepared on heat-treated Vulcan carbon substrate is equivalent to that reported in the literature for the state-of-the-art electrocatysts. Pt:Ru:Mo/C samples prepared in this work presented the higher catalytic effect for methanol electro-oxidation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adsorption isotherms of MCl(2) (M = Mn, Ni, Cu, Zn and Cd) and FeCl3 by silica gel chemically modified with benzimidazole molecules (= SI(CH2)(3)-NC7H5N) were studied in ethanol solution at 298 K. A column made of modified silica was used to adsorb and preconcentrate the above metal ions from ethanol solution. Elution was done with 0.1 M hydrochloric acid in an ethanol/water mixture having a mole fraction of water of 0.8. The material was applied in the preconcentration of metal ions from commercial ethanol normally used as engine fuel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The carbonyl complexes [WCl(CO)(3)(bipy) (HgCl)] (1), [Fe(CO)(4)(HgCl)(2)] (2) and W(CO)(6)] (3) were immobilized on a silica gel surface organofunctionalized with piperazine groups. The products obtained were studied by IR spectroscopy and small angle X-ray scattering (SAXS) techniques. The IR data show that the immobilization of heterobimetallic compounds 1 and 2, on the functionalized surface, occurred through the mercury atom, while for 3 the displacement of one CO group by the nitrogen of a piperazine molecule was observed. The data obtained from SAXS indicate that particles have a uniform size and reveal suitable modifications on the functionalized surface after immobilization of metal carbonyl complexes. The average intermolecular distance (l(ij)) for piperazine ligands on support is 8.7 Angstrom, for the metal carbonyl complex 1 it is 18.8 Angstrom, for complex 2 it is 16.2 Angstrom and for complex 3 it is 15.3 Angstrom. Copyright (C) 1996 Elsevier B.V. Ltd

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The tension-tension fatigue behavior of metal/fiber laminates (MFLs) has been investigated. These MFLs were produced with carbon fiber and by treating the aluminum foil to promote adhesion bonding by two methods: sulfuric-boric-oxalic acid anodization (SBOA) and chromic acid anodization (CAA). The surface treatments were evaluated by scanning electron microscopy (SEM) techniques and roughness measurements. It was observed that MFL specimens produced with SBOA treatments presents comparable mechanical results when compared with MFLs produced with CAA treatment. Microstructural observations of the fracture surfaces by SEM show hackle formation is the predominant damage mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, modifications of alumina surface with of alkaline earth metal oxides were studied, using the polymeric precursor method. The modified compounds were characterized by X-ray diffraction, nitrogen adsorption-desorption and scanning electron microscopy. The catalytical properties of these new catalysts were evaluated for the transesterification reaction of babassu oil. It is observed that the transesterification reaction of babassu oil with methanol was successfully carried out using the modified alumina samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lignins extracted from sugar cane bagasse using different alcohols in the organosolv-CO(2) supercritical pulping process have been applied in the fabrication of ultrathin films through the Langmuir-Blodgett technique. Langmuir films were characterized by surface pressure versus mean molecular area (Pi-A) isotherms to exploit the sensitivity of nanostructured lignin films to metallic ions (Cu(2+), Cd(2+) and Pb(2+)). The Pi-A isotherms were shifted to larger molecular areas when heavy metal ions are present into the subphase, which might be related to electrostatic repulsions between metallic ions entrapped within the lignin molecular structure. Taking the advantage of metal incorporation, Langmuir monolayers were transferred onto solid substrates forming Langmuir-Blodgett (LB) films to be used as a transducer in an "electronic tongue" system to detect Cu(2+) in aqueous solution below threshold standard established by the Brazilian regulation. Both techniques impedance spectroscopy and electrochemistry have been used in these experiments. Complementary, Fourier transform infrared (FTIR) spectroscopy recorded for LB films before and after soaking into Cu(2+) aqueous solution revealed an interaction between the lignin phenyl groups and the metallic ion. (C) 2007 Elsevier B.V.. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous fiber/metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent fatigue endurance and low density. Glass fibers/epoxy laminae and aluminum foil (Glare) are commonly used to obtain these hybrid composites. The environmental factors can limit the applications of composites by deteriorating the mechanical properties during service. Usually, epoxy resins absorb moisture when exposed to humid environments and metals are prone to surface corrosion. Therefore, the combination of the two materials in Glare (polymeric composite and metal). can lead to differences that often turn out to be beneficial in terms of mechanical properties and resistance to environmental influences. In this work. The viscoelastic properties. such as storage modulus (E') and loss modulus (E'), were obtained for glass fiber/epoxy composite, aluminum 2024-T3 alloy and for a glass fiber/epoxy/aluminum laminate (Glare). It was found that the glass fiber/epoxy (G/E) composites decrease the E' modulus during hygrothermal conditioning up to saturation point (6 weeks). However, for Glare laminates the E' modulus remains unchanged (49GPa) during the cycle of hygrothermal conditioning. The outer aluminum sheets in the Glare laminate shield the G/E composite laminae from moisture absorption. which in turn prevent, in a certain extent, the material from hygrothermal degradation effects. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)