28 resultados para Mechanical scarification
Resumo:
Este trabalho teve como objetivos padronizar a metodologia do teste de tetrazólio e avaliar a aplicabilidade deste para estimar a viabilidade de sementes de Gleditschia amorphoides. Inicialmente, foram avaliados os seguintes tratamentos de pré-condicionamento: semente intacta, escarificação mecânica, escarificação seguida de 24 ou 48 horas de embebição em água, com e sem posterior retirada do tegumento. em seguida, as sementes foram submetidas a 1, 3 ou 6 horas de coloração em solução de 2, 3, 5 trifenil cloreto de tetrazólio às concentrações de 0,025; 0,050; 0,075 ou 0,10% a 35ºC, no escuro. Sementes escarificadas e embebidas por 48 horas, com retirada do tegumento, imersas em solução de tetrazólio a 0,075% por 3 horas apresentaram coloração ideal, possibilitando a identificação das sementes em viáveis e inviáveis. Utilizando o protocolo acima descrito, avaliou-se a adequação do teste de tetrazólio em estimar a viabilidade de sementes de Gleditschia amorphoides através da comparação com o teste de germinação. A comparação não resultou em diferenças significativas entre eles. O teste de tetrazólio utilizando solução a 0,075% por 3 horas pode ser utilizado na estimativa da viabilidade de sementes de Gleditschia amorphoides.
Resumo:
O trabalho é um estudo das condições de germinação das sementes de Cassia tora L., planta invasora das culturas em geral e, principalmente, da cultura da soja. Nesta pesquisa, estudou se a quebra da dormência, o efeito da profundidade de semeadura sobre a emergência de plântulas e o potencial de armazenamento, considerando o envelhecimento natural e precoce com o objetivo de um controle mais racional desta espécie. As profundidades de semeadura de 4 a 6 cm apresentaram as porcentagens mais altas de emergência das plântulas. A porcentagem de germinação de sementes, logo após a colheita, encontra-se próxima de 42%, decrescendo para 40%, 39% e 30%, aproximadamente, nos períodos de armazenamento por 90, 180 e 270 dias, respectivamente, evidenciando uma porcentagem média de germinação próxima de 38% nos períodos considerados. O processo de escarificação mecânica mostrou-se o mais eficiente para quebra da dormência das sementes
Resumo:
Dormancy caused by the tegument's impermeability to water is a feature of Schizolobium parahyba seeds. So that the best methodology for overcoming the species's dormancy may be determined, the seeds were submitted to mechanical scarification treatments, using sandpaper and scissors, on the opposite side of the hilum. Chemical scarification was also undertaken with sulfuric (H
Resumo:
Understanding basic information on weed biology contributes to the implementation of appropriate management and control strategies. Thus, this work was developed to evaluate the germination of Spermacoce latifolia Aubl. seeds, an important weed in reforestation areas. The seeds were subjected to dormancy break treatments, in which the mechanical scarification, chemical treatment (H2SO 4 and KNO 3), heat treatment, and control, were evaluated. Three more tests were done determinate the effects of temperature (10, 15, 20, 25, 30 and 35°C), light filters (absence of light and red, green, yellow, distant red, blue, orange and clear light) and water availability (0.0, -0.2, -0.4, -0.6, -0.8 and -1.0 MPa) on the seeds germination and vigor. The treatments were arranged in a completely randomized design with four replications, and the experimental plot was constituted by gerbox plastic boxes with 50 seeds. The mechanical scarification (sanding) provided the best dormancy break, indicating that Spermacoce latifolia seeds have tegument water impermeability. The seeds showed higher germination percentage under conditions of mild water stress (-0.2 MPa) and the optimal temperature was 25°C. The blue light reduced seed germination.
Resumo:
Forest species with hard seeds often pose considerable problems to nursery managers because their hard and impermeable seed coats hinder and delay germination. Therefore, this work aimed to determine the most efficient, practical and low cost methodology to overcome dormancy in Sesbania virgata (Cav.) Pers. Seed, a specie with potential for recovery of degraded areas. The seeds were submitted to chemical scarification by immersion in sulfuric acid during a period of 5, 10, 20 and 30 minutes, mechanical scarification and heat treatment. After the scarification the seeds were submitted to germ test in germination chambers at 25oC and photoperiod of 14 h. Treatment with mechanical scarification showed the highest germination percentage (98%), followed by chemical scarification for 30 minutes (57%). The heat treatment in spite of obtaining a higher germination percentage than the controls had abnormal development of seedlings and is not therefore recommended for seeds of S. virgata. From the parameters utilized in this study, we recommend the use of the mechanical scarification to overcome dormancy of S. virgata seeds.
Resumo:
The propagation of 'juçara' and 'açaí' is done by seeds, but there is a great desuniformity in the germination process. In this way, the objective of this study was to verify the effect of temperature, mechanical scarification and substrate on seed germination of both species. Two experiments were conducted in a completely randomized design, with four replications each consisting of 25 seeds. The first was conducted with 14 treatments in factorial scheme 7 x 2, seven temperatures (20, 25, 30, 35, 20-30 and 25-35 °C and natural condition), with and without mechanical scarification. The second was constituted of eight treatments in factorial scheme 4 x 2, four substrates (sand, vermiculite, coconut fiber and soil + manure), with and without mechanical scarification. Seeds of 'juçara' palm present the highest mean percentage and germination speed index in alternating temperatures of 20-30 and 25-35 °C and natural condition and in substrates sand, vermiculite and coconut fiber. Temperatures of 30, 35, 20-30 and 25-35 °C and natural condition in all substrates tested were the most favorable condition for 'açai' seeds. The scarification of the seeds was favorable to the germination process of 'juçara' whereas the seeds of açaí does not need to be scarified.
Resumo:
Pós-graduação em Ciências Biológicas (Botânica) - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
The physic nut can be propagated asexually or sexually. Using cuttings have been earlier yield and more fidelity characteristics of the parent plant. However, there is less initial vegetative growth. The seeds from the plants have increased genetic variability, are more vigorous and begin production later. To get quality changes, the substrate is an important factor. With that the objective was to taste pre-germinated treatments and different substrate on seeds emergence and quality physic nut seedlings. The experimental design was completely randomized, in factorial scheme 6 x 3 (pre-germinated treatments x substrate), 18 treatments and 4 repetition, 8 seeds to each repetition. It was evaluated six pre-germination treatments: T1: witness (without treatments); T2: water immersion for 12 hours; T3: water immersion for 24 hours; T4: mechanical scarification; T5: mechanical scarification + water immersion for 12 hours; T6: mechanical scarification + water immersion for 24 hours, using as substrate: commercial, expanded vermiculite and sand washed. The mechanical scarification was realized opposite the micropyle using sandpaper n. 60. After the pre-germination treatments, the seeds were emergence in plastic cups (200mL) with substrates. We evaluated the characteristics: percentage, beginning and emergence speed index, mean length of plant, diameter of plant stem, SPAD index, fresh and dry shoot and root. The results showed that in seeds of Jatropha do not need pre-germinative treatments; and the use of commercial substrate showed seedling development.