129 resultados para Mechanical Test Equipment.
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Pós-graduação em Design - FAAC
Resumo:
Recentemente, foram lançados no mercado odontológico novos materiais estéticos para restaurações diretas em dentes posteriores, aos quais são atribuídas propriedades mais adequadas para essa indicação. Entretanto, as informações disponíveis são ainda muito escassas, gerando dúvidas quanto à sua real eficácia, sobre quais as diferenças de suas composições e propriedades físicas e mecânicas em relação aos materiais até então disponíveis e se, de fato, apresentam melhor performance clínica. Em vista do exposto, nos propusemos a estudar contração de polimerização, resistência à flexão e concentração de partículas inorgânicas, por massa e volume, de sete resinas compostas (Alert, Ariston, Solitaire, Definite, Filtek P60, Z-100 e Tetric Ceram). A contração de polimerização foi medida nos materiais inseridos em um anel plástico, e o registro das alterações, durante a polimerização, foi feito por meio de instrumento eletrônico de medida linear, que registra as alterações dimensionais, com sensibilidade de 1 mm. A resistência à flexão foi medida na máquina de ensaios mecânicos MTS 810 e a confecção dos corpos-de-prova e dos dispositivos para o ensaio foi orientada pela norma ISO no 4049:1988. A determinação do conteúdo de partículas inorgânicas por massa foi feita através da pesagem de uma porção de resina composta polimerizada antes e após a eliminação da fase orgânica em forno, à temperatura de 700oC. O porcentual volumétrico de partículas inorgânicas foi calculado com base no Princípio de Arquimedes. Foi determinado o volume da resina composta polimerizada, antes e após a eliminação da fase orgânica, pela diferença da massa do material pesado ao ar e imerso em água. Os dados de conteúdo de partículas inorgânicas por massa e por volume, de contração de polimerização e resistência à flexão foram submetidos...(Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
The aim of this study it was to evaluate the use of irrigating solution used during root canal preparation on the adhesive cementation of prefabricated fiberglass pins. The bond strength between different regions of the root and the fiberglass pins cemented into the root canal were evaluated by push-out assay. For this study, 36 human teeth were used, all equally prepared. The irrigating solutions used for biomechanical preparation were: saline solution, sodium hypochlorite 2,5% and glycolic extract of salvia 20%. The dual cure resin cement was used for cementation of pins. After cementation, specimens were sectioned to give 3 slices of approximately 2 mm each (cervical, middle and apical), which were submitted to mechanical push-out test. Were performed ANOVA and Tukey's test with a significance level of 5%, for the analysis of mechanical test. Comparing the thirds we observed that the only solution that presented statistical difference in the bond strength was sodium hypochlorite, which showed higher values for the middle and apical third compared with the cervical third, but when compared without taking into consideration the dental thirds, solutions studied showed no differences in bond strength. Therefore, it was concluded that the solutions studied can be used during endodontic treatment without causing harmful effects on the final adhesive restoration
Resumo:
Nowadays technological trend is based on finding materials that could support low weight with satisfactory mechanical properties and for this reason composite material became a very attractive topic in research projects all over the world. Due to its heterogenic properties, this type of material shows scatter in mechanical test results, especially in cyclic loading. Therefore it is important to predict its fatigue strength behaviour by statistic analysis, once fatigue causes approximately 90% of the failure in structural components. The present work aimed to investigate the fatigue behaviour of the Twill/Cycom 890 composite, which is carbon fiber reinforced with polymeric resin as matrix and manufactured via RTM process (Resin Transfer Molding). All samples were tested in different tensile level in triplicate in order to associate these values. The statistical analysis was conducted with Two-Parameter Weibull Distribution and then evaluated the fatigue life results for the composite. Weibull graphics were used to determine the scale and shape parameters. The S-N curve for the Twill/Cycom composite was drawn and indicated the number of cycles to occur the first damages in this material. The probability of failure was associated with material reliability, as shown in graphics for the different tensile levels and fatigue life. In addition, the laminate was evaluated by ultrasonic inspection showing a regular impregnation. The fractographic analysis conducted by SEM showed failure mechanisms for polymeric composites associated to cyclic loadings ... (Complete abstract click electronic access below)
Resumo:
The automobile industry is increasingly interested in reducing vehicle weight for greater speed, lower fuel consumption and emissions, through innovation of materials and processes. One way to do this is to seek the replacement of conventional processes by the use of structural adhesives. Structural adhesives are highly resistant materials, which can replace rivets, bolts and welds allowing the substrate / adhesive assemble is stronger than the substrate itself. One of the major advantages of gluing with respect to welding is its esthetic appearance, since it does not leave marks. For this reason, parts to be soldered require a minimum thickness so that the marks do not appear, since the pieces from gluing have no restriction as to the thickness. By replacing the vibration welding process for gluing process of the instrument panel parts of an automobile, one obtains a reduction of the thickness of the parts and therefore it decreases the weight of the car. This work aims to study the various structural adhesives that already exist on the market to be applied on the instrument panel. The mechanical test performed to measure the maximum adhesive strength was the Lap Shear Test at 23°C (room temperature), -35°C and 85°C. The types of adhesives used were the hot-melt and the bi-component. By the results obtained, it is in favor using the bi-component for application to the union of instrument panel parts
Resumo:
By means of tensile strength, NiCr total crowns were removed from machine-made conical abutments composed by an Ti-6Al-4V alloy. In a total of 20 abutments, 10 were used with it surface presenting high smoothness and 10 abutments had its surfaces modifi ed by laser both cemented with zinc phosphate. The mechanical test was performed at a MTS 810 universal machine adjusted to a speed of 0.5 mm/m. The statistical analysis was done by Levene’s test, which showed homogeneity of variances among groups (F =2.21; p < 0.1). “Student t test” showed that signifi cant differences were found between groups. The modifi cation of the abutment surface through laser caused an increase in pull-out resistance of crowns cemented with zinc phosphate from 430.66 N to 1.514,87 N.