81 resultados para Matrix effects
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
edge effect. Thus, under the influence of the adjacent matrix, fragments undergo microclimatic alterations that accentuate changes in species composition and community structure. In order to better understand edge and matrix effects on the richness and abundance of edaphic arthropods, this study assessed: (a) the difference between habitat (fragment) and non-habitat (matrix); (b) whether there is a continuous interior-edge-matrix gradient; and (c) the difference between matrices for arthropod orders richness and abundance. We selected 15 landscapes, 5 of which contained a cerrado fragment surrounded by sugarcane cultivation, 5 with a cerrado fragment within eucalyptus and 5 with a cerrado fragment within pasture. In each landscape the soil fauna was collected along with the soil and then extracted with the aid of the modified Berlese-Tullgren funnel. We chose the orders Coleoptera, Collembola, Mesostigmata and Oribatida for analysis, and after separation of the individuals we used model selection analysis via AIC. The model type fragment x matrix was the most likely to explain richness, total and relative abundances of the four orders (wAICc between 0,6623 and 1,0). The model of edge distance (edge effect) was plausible to total abundance and relative abundance of Mesostigmata order (wAICc=0,2717 and 0,186). Local environmental variables (soil texture, temperature and relative humidity), and fragment size were also measured to avoid confounding factors and were not presented as plausible models to explain the patterns. So edaphic arthropods, despite protecting themselves under the ground, are extremely sensitive to fragmentation, even with the replacement of natural habitat by agricultural use, such as sugarcane, pasture and eucalyptus. This group should be studied environmental impact assessments because provides important ecosystem se ravincde s inacnludd eisd ainn efficient bio-indicator
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Increased expression of matrix metalloproteinase-1 (MMP1) is associated with poor prognosis in cancers. Several single nucleotide polymorphisms (-1607GG > G, -839G > A, -755G > T, -519A > G, -422T > A, -340C > T, and 320C > T) in the MMP1 gene promoter have recently been identified. In this study, we assessed the functional effects of these polymorphisms on MMP1 gene promoter activity in cell lines of melanoma (A2058 and A375), breast cancer (MCF7 and MDA-MB-231), lung cancer (A549 and H69), and colorectal cancer (HT-29, SW-620) by comparing the promoter strengths of 10 most common haplotypes deriving from these polymorphisms. In A2058 cells, the GG-G-G-A-T-T-T and GG-G-G-A-C-T haplotypes had 2-fold higher promoter activity than the GG-G-T-A-T-T-C, GG-G-G-A-A-T-T, GG-G-G-A-T-T-C, and GG-G-G-A-A-C-T haplotypes, which in turn, had 3-fold higher promoter activity than the G-G-T-A-A-C-T, G-A-T-G-T-T-T, G-A-T-G-A-C-T, and G-A-T-G-A-T-G haplotypes. In A375 and MDA-MB-231 cells, high expression haplotypes include not only the -1607GG-bearing haplotypes but also the G-A-T-G-A-T-T haplotype containing the -1607G allele. A similar trend was detected in A549 cells. In addition, in A549 cells, the GG-G-G-A-T-T-T haplotype had > 2-fold higher promoter activity than several other 1607GG-bearing haplotypes. In MCF7 cells, the GG-G-G-A-T-T-T and G-G-T-A-A-C-T haplotypes had 1.5- to 4-fold higher promoter activity than the other haplotypes. These results suggest that the polymorphisms exert haplotype effects on the transcriptional regulation of the MMP1 gene in cancer cells, and indicate a need to examine haplotypes rather than any single polymorphism in genetic epidemiologic studies of the MMP1 gene in cancers.
Resumo:
A matrix approach is described for assessing the variance of effects in incomplete diallels designs. The method is illustrated by reference to simulated complete and incomplete diallels using different combinations of constraints, average degree of dominance and, for the incomplete diallel, number of hybrids. Our results showed that caution should be taken in working with incomplete diallels under conditions of overdominance because there were changes in the rank of the genotypes when the excluded hybrid had parents with a low frequency of the favorable allele (i.e. the allele which increases expression of a character). The expression described in this paper is a rapid and safe approach to estimate variances and covariances of the effects of contrasts of incomplete diallels. Copyright by the Brazilian Society of Genetics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fiber reinforced epoxy composites are used in a wide variety of applications in the aerospace field. These materials have high specific moduli, high specific strength and their properties can be tailored to application requirements. In order to screening optimum materials behavior, the effects of external environments on the mechanical properties during usage must be clearly understood. The environmental action, such as high moisture concentration, high temperatures, corrosive fluids or ultraviolet radiation (UV), can affect the performance of advanced composites during service. These factors can limit the applications of composites by deteriorating the mechanical properties over a period of time. Properties determination is attributed to the chemical and/or physical damages caused in the polymer matrix, loss of adhesion of fiber/resin interface, and/or reduction of fiber strength and stiffness. The dynamic elastic properties are important characteristics of glass fiber reinforced composites (GRFC). They control the damping behavior of composite structures and are also an ideal tool for monitoring the development of GFRC's mechanical properties during their processing or service. One of the most used tests is the vibration damping. In this work, the measurement consisted of recording the vibration decay of a rectangular plate excited by a controlled mechanism to identify the elastic and damping properties of the material under test. The frequency amplitude were measured by accelerometers and calculated by using a digital method. The present studies have been performed to explore relations between the dynamic mechanical properties, damping test and the influence of high moisture concentration of glass fiber reinforced composites (plain weave). The results show that the E' decreased with the increase in the exposed time for glass fiber/epoxy composites specimens exposed at 80 degrees C and 90% RH. The E' values found were: 26.7, 26.7, 25.4, 24.7 and 24.7 GPa for 0, 15, 30, 45 and 60 days of exposure, respectively. (c) 2005 Springer Science + Business Media, Inc.
Resumo:
The environmental factors, such as humidity and temperature, can limit the applications of composites by deteriorating the mechanical properties over a period of time. Environmental factors play an important role during the manufacture step and during composite's life cycle. The degradation of composites due to environmental effects is mainly caused by chemical and/or physical damages in the polymer matrix, loss of adhesion at the fiber/matrix interface, and/or reduction of fiber strength and stiffness. Composite's degradation can be measure by shear tests because shear failure is a matrix dominated property. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites ( laminates [0/0](s) and [0/90](s)) have been investigated. The interlaminar shear strength (ILSS) was measured by using the short beam shear test, and Iosipescu shear strength and modulus (G(12)) have been determinated by using the Iosipescu test. Results for laminates [0/0](s) and [0/90](s), after hygrothermal conditioning, exhibited a reduction of 21% and 18% on the interlaminar shear strenght, respectively, when compared to the unconditioned samples. Shear modulus follows the same trend. A reduction of 14.1 and 17.6% was found for [0/0](s) and [0/90](s), respectively, when compared to the unconditioned samples. Microstructural observations of the fracture surfaces by optical and scanning electron microscopies showed typical damage mechanisms for laminates [0/0](s) and [0/90](s).