26 resultados para Magnets


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, a simplified dynamical model of a magnetically levitated body is considered. The origin of an inertial Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state (ie, the gap between the magnet on the base and the magnet on the body, in this state). The governing equations of motion has been derived and the characteristic feature of the strategy is the exploitation of the nonlinear effect of the inertial force associated, with the motion of a pendulum-type vibration absorber driven, by an appropriate control torque [4]. In the present paper, we analyzed the nonlinear dynamics of problem, discussed the energy transfer between the main system and the pendulum in time, and developed State Dependent Riccati Equation (SDRE) control design to reducing the unstable oscillatory movement of the magnetically levitated body to a stable fixed point. The simulations results showed the effectiveness of the (SDRE) control design. Copyright © 2011 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, ancillary services are supplied by large conventional generators. However, with the huge penetration of distributed generators (DGs) as a result of the growing interest in satisfying energy requirements, and considering the benefits that they can bring along to the electrical system and to the environment, it appears reasonable to assume that ancillary services could also be provided by DGs in an economical and efficient way. In this paper, a settlement procedure for a reactive power market for DGs in distribution systems is proposed. Attention is directed to wind turbines connected to the network through synchronous generators with permanent magnets and doubly-fed induction generators. The generation uncertainty of this kind of DG is reduced by running a multi-objective optimization algorithm in multiple probabilistic scenarios through the Monte Carlo method and by representing the active power generated by the DGs through Markov models. The objectives to be minimized are the payments of the distribution system operator to the DGs for reactive power, the curtailment of transactions committed in an active power market previously settled, the losses in the lines of the network, and a voltage profile index. The proposed methodology was tested using a modified IEEE 37-bus distribution test system. © 1969-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic fields can be produced by natural magnets, artificial magnets, and by circulating electric currents in wires and solenoids. An interesting experiment to observe the interaction between the magnetic field and free charges in a conductor, a magnet falling inside a tube made of conductive materials. The slowing down of the magnet by the appearance of a field in the opposite direction to the original one (Lenz's Law) is function the number of free electrons in the conductor and the electrical properties of this. Based on this, the objective of this study is to analyze the relationship between the electrical properties of conductors, copper and aluminum, with magnetic force on a neodymium magnet-iron-boron magnet falling inside a copper tube and aluminum, positioned vertically. In performing this experiment, we observed that it is a demonstration of Lenz-Faraday’s Law

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work will discuss how magnetic fields can be produced, either generated by magnets, natural, artificial, or even by an electric current going through a wire, as discovered by Oersted. Besides the theoretical content, experimental studies on magnetic induction and on the Laws of Faraday and Lenz will be performed. In the Magnetic Induction experiment, the electromotive force generated by varying the flow of the field B in a solenoid, depending on the variation of the current intensity and frequency associated with it will be measured; the experiment on the Laws of Faraday and Lenz the electromotive force produced by the relative movement of the magnet in relation to a coil. Thus, this study experimental verification of magnetic induction using solenoids and magnets; analysis of magnetic induction by Faraday's Law and Lenz's Law

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements. Copyright (C) 2015 Elsevier Ltd. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the behavior of the falling motion of neodymium magnets, inside conductive a metallic duct made of copper, aluminum, brass and bronze. We obtain, analyze and present results involving relationships between material and dynamical properties of falling neodymium magnets with the mechanical and electrical properties of conductive materials, such as mass, electrical resistivity, electrical conductivity, length and external diameter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE