62 resultados para MTOR inhibitors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
LASSBio-767 [(-)-3-O-acetyl-spectaline] and LASSBio-822 [(-)-3-O-tert-Boc-spectaline] were recently described as cholinesterase inhibitors derived from the natural piperidine alkaloid (-)-spectaline, obtained from the flowers of Senna spectabilis (Fabaccae). We investigated their mechanism of inhibition of acetylcholinesterase and their efficacy in reversing scopolamine-induced amnesia. Competition assays with the substrate acetylthiocholine showed a concentration-dependent reduction in rat brain cholinesterase V-max without changes in apparent K-m. The kinetic data for LASSBio-767 and LASSBio-822 were best fit by a model of simple linear noncompetitive inhibition with K-i of 6.1 mu M and 7.5 mu M, respectively. A dilution assay showed a fast and complete reversal of inhibition, independent of incubation time. Simulated docking of the compounds into the catalytic gorge of Torpedo acetylcholinesterase showed interactions with the peripheral anionic site, but not with the catalytic triad. Anti-amnestic effects in mice were assessed in a step-down passive avoidance test and in the Morris water maze 30 min after injection of scopolamine (1 mg/kg i.p.). Saline, LASSBio-767, or LASSBio-822 was administered 15 min before scopolamine. Both compounds reversed the scopolamine-induced reduction in step-down latency at 0.1 mg/kg i.p. LASSBio-767 reversed scopolamine-induced changes in water maze escape latency at 1 mg/kg i.p. or p.o., while its cholinergic side effects were absent or mild up to 30 mg/kg i.p. (LD50 above 100 mg/kg i.p.). Thus, the (-)-spectaline derivatives are potent cholinergic agents in vivo, with a unique profile combining noncompetitive cholinesterase inhibition and CNS selectivity, with few peripheral side effects. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Five new piperidine alkaloids were designed from natural (-)-3-O-acetyl-spectaline and (-)-spectaline that were obtained from the flowers of Senna spectabilis (sin. Cassia spectabilis, Leguminosae). Two semi-synthetic analogues (7 and 9) inhibited rat brain acetylcholinesterase, showing IC50 of 7.32 and 15.1 mu M, and were 21 and 9.5 times less potent against rat brain butyrylcholinesterase, respectively. Compound 9 (1 mg/kg, ip) was fully efficacious in reverting scopolamine-induced amnesia in mice. The two active compounds (7 and 9) did not show overt toxic effects at the doses tested in vivo. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Roscovitine and flavopiridol have been shown to potently inhibit cyclin-dependent kinase 1 and 2 (CDK1 and 2). The structures of CDK2 complexed with roscovitine and deschoroflavopiridol have been reported, however no crystallographic structure is available for complexes of CDK1 with inhibitors. The present work describes two molecular models for the binary complexes CDK1:roscovitine and CDK1:flavopiridol. These structural models indicate that both inhibitors strongly bind to the ATP-binding pocket of CDKI and structural comparison of the CDK complexes correlates the structures with differences in inhibition of these CDKs by flavopiridol and roscovitine. This article explains the structural basis for the observed differences in activity of these inhibitors. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
As part of our study on bioactive agents from Brazilian rainforest plants, two new glucoalkaloids, 3,4-dehydro-strictosidine (1) and 3,4-dehydro-strictosidinic acid (2), were isolated from Chimarrhis turbinata, along with seven known glucoalkaloids, cordifoline (3), strictosidinic acid (4), strictosidine (5), 5alpha-carboxystrictosidine (6), turbinatine (7), desoxycordifoline (8), and harman-3-carboxylic acid (9). The structures of the new alkaloids were established on the basis of comprehensive spectral analysis, mainly 1D and 2D NMR experiments, as well as high-resolution HRESIMS. Alkaloid 3 showed strong free-radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) as well as pronounced antioxidant activity evidenced by redox properties measured by ElCD-HPLC. Additionally, alkaloids 1-9 were submitted to TLC screening for acetylcholinesterase inhibitors. Both 7 and 8 were shown to be moderate acetylcholinesterase inhibitors at a concentration of 0.1 and 1.0 muM, respectively. In an in vitro rat brain assay, 7 showed moderate activity (IC50 1.86 muM), compared to the standard compound, galanthamine (IC50 0.92 muM).
Resumo:
Alzheimer's disease (AD) is a progressive neurodegenerative pathology with severe economic and social impact. There is currently no cure, although cholinesterase inhibitors provide effective temporary relief of symptoms in some patients. Nowadays, drug research and development are based on the cholinergic hypothesis that supports the cognition improvement by regulation of the synthesis and release of acetylcholine in the brain. There are only four commercial medicines approved for treatment of AD, and natural products have played an important alternative role in the research for new acetylcholinesterase inhibitors, as exemplified through the discovery of galantamine. This profile conducts us to give in this paper an overview relating the several classes of natural products with anti-cholinesterasic activity as potential templates to the design of new selective and powerful anti-Alzheimer drugs.