19 resultados para MONOPHOSPHATE KINASE INHIBITORS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cysteine proteinase inhibitor cystatin C inhibited RANKL-stimulated osteoclast formation in mouse bone marrow macrophage cultures, an effect associated with decreased mRNA expression of Acp5, Calcr, Ctsk, Mmp9, Itgb3, and Atp6i, without effect on proliferation or apoptosis. The effects were concentration dependent with half-maximal inhibition at 0.3 μM. Cystatin C also inhibited osteoclast formation when RANKL-stimulated osteoclasts were cultured on bone, leading to decreased formation of resorption pits. RANKL-stimulated cells retained characteristics of phagocytotic macrophages when cotreated with cystatin C. Three other cysteine proteinase inhibitors, cystatin D, Z-RLVG-CHN2 (IC50 0.1 μM), and E-64 (IC 50 3 μM), also inhibited osteoclast formation in RANKL-stimulated macrophages. In addition, cystatin C, Z-RLVG-CHN2, and E-64 inhibited osteoclastic differentiation of RANKL-stimulated CD14+ human monocytes. The effect by cystatin C on differentiation of bone marrow macrophages was exerted at an early stage after RANKL stimulation and was associated with early (4 h) inhibition of c-Fos expression and decreased protein and nuclear translocation of c-Fos. Subsequently, p52, p65, IκBα, and Nfatc1 mRNA were decreased. Cystatin C was internalized in osteoclast progenitors, a process requiring RANKL stimulation. These data show that cystatin C inhibits osteoclast differentiation and formation by interfering intracellularly with signaling pathways downstream RANK. © FASEB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chikungunya virus (CHIKV) is a mosquito-borne arthrogenic alphavirus that causes acute febrile illness in humans accompanied by joint pains and in many cases, persistent arthralgia lasting weeks to years. The re-emergence of CHIKV has resulted in numerous outbreaks in the eastern hemisphere, and threatens to expand in the foreseeable future. Unfortunately, no effective treatment is currently available. The present study reports the use of resazurin in a cell-based high-throughput assay, and an image-based high-content assay to identify and characterize inhibitors of CHIKV-infection in vitro. CHIKV is a highly cytopathic virus that rapidly kills infected cells. Thus, cell viability of HuH-7 cells infected with CHIKV in the presence of compounds was determined by measuring metabolic reduction of resazurin to identify inhibitors of CHIKV-associated cell death. A kinase inhibitor library of 4,000 compounds was screened against CHIKV infection of HuH-7 cells using the resazurin reduction assay, and the cell toxicity was also measured in non-infected cells. Seventy-two compounds showing >= 50% inhibition property against CHIKV at 10 mu M were selected as primary hits. Four compounds having a benzofuran core scaffold (CND0335, CND0364, CND0366 and CND0415), one pyrrolopyridine (CND0545) and one thiazol-carboxamide (CND3514) inhibited CHIKV-associated cell death in a dose-dependent manner, with EC50 values between 2.2 mu M and 7.1 mu M. Based on image analysis, these 6 hit compounds did not inhibit CHIKV replication in the host cell. However, CHIKV-infected cells manifested less prominent apoptotic blebs typical of CHIKV cytopathic effect compared with the control infection. Moreover, treatment with these compounds reduced viral titers in the medium of CHIKV-infected cells by up to 100-fold. In conclusion, this cell-based high-throughput screening assay using resazurin, combined with the image-based high content assay approach identified compounds against CHIKV having a novel antiviral activity -inhibition of virus-induced CPE - likely by targeting kinases involved in apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p38 mitogen-activated protein kinases (MAPKs) are critical for innate immune signaling and subsequent cytokine expression in periodontal inflammation and bone destruction. In fact, previous studies show that systemic p38 MAPK inhibitors block periodontal disease progression. However, development of p38 MAPK inhibitors with favorable toxicological profiles is difficult. Here, we report our findings regarding the contribution of the downstream p38 MAPK substrate, mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAPK-2), in immune response modulation in an experimental model of pathogen-derived lipopolysaccharide (LPS)-induced periodontal bone loss. To determine whether small interfering RNA (siRNA) technology has intraoral applications, we initially validated MK2 siRNA specificity. Then, gingival tissue surrounding maxillary molars of rats was injected with MK2 siRNA or scrambled siRNA at the palatal regions of bone loss. Intraoral tissues treated with MK2 siRNA had significantly less MK2 mRNA expression compared with scrambled siRNA-treated tissues. MK2 siRNA delivery arrested LPS-induced inflammatory bone loss, decreased inflammatory infiltrate, and decreased osteoclastogenesis. This proof-of-concept study suggests a novel target using an intraoral RNA interference strategy to control periodontal inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)