44 resultados para MISSENSE MUTATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiretroviral resistance mutations (ARM) are one of the major obstacles for pharmacological human immunodeficiency virus (HIV) suppression. Plasma HIV-1 RNA from 306 patients on antiretroviral therapy with virological failure was analyzed, most of them (60%) exposed to three or more regimens, and 28% of them have started therapy before 1997. The most common regimens in use at the time of genotype testing were AZT/3TC/nelfinavir, 3TC/D4T/nelfinavir and AZT/3TC/efavirenz. The majority of ARM occurred at protease (PR) gene at residue L90 (41%) and V82 (25%); at reverse transcriptase (RT) gene, mutations at residue M184 (V/I) were observed in 64%. One or more thymidine analogue mutations were detected in 73%. The number of ARM at PR gene increased from a mean of four mutations per patient who showed virological failure at the first ARV regimens to six mutations per patient exposed to six or more regimens; similar trend in RT was also observed. No differences in ARM at principal codon to the three drug classes for HIV-1 clades B or F were observed, but some polymorphisms in secondary codons showed significant differences. Strategies to improve the cost effectiveness of drug therapy and to optimize the sequencing and the rescue therapy are the major health priorities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To investigate the presence of mutations in the pncA gene in 31 pyrazinamide-resistant Mycobacterium tuberculosis and 5 susceptible strains. MICs and pyrazinamidase (PZase) activity were also determined.Methods: All 36 M. tuberculosis clinical isolates were genotyped by mycobacterial interspersed repetitive units (MIRUs) and most were also typed by spoligotyping. The MIC value necessary to inhibit 99% of the resistant mycobacterial isolates was determined by microplate Alamar Blue assay (MABA) and by Lowenstein-Jensen assay (LJA). The PZase activity was measured by pyrazinamide deamination to pyrazinoic acid and ammonia, and the entire pncA sequence including the 410 by upstream from the start codon was determined by DNA sequencing of purified PCR products.Results: of the 31 isolates resistant to pyrazinamide, 26 (83.9%) showed at least one mutation in the pncA gene or in its putative regulatory region: Among the 22 different mutations detected in the pncA gene and in its regulatory region, 9 (40.9%) mutations (consisting of six substitutions, two insertions and one deletion) have not been described in previous studies. Three pyrazinamide-resistant isolates, confirmed by MIC varying from 800 to 1600 mg/L, carried the wild-type pncA sequence and retained PZase activity.Conclusions: These results contribute to the knowledge of the molecular mechanism of pyrazinamide resistance in Brazil and also expand the profile of pncA mutations worldwide. The MABA was successfully used to determine the MICs of pyrazinamide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the role played by acetate metabolism during high-cell-density growth of Escherichia coli cells, we constructed isogenic null mutants of strain W3100 deficient for several genes involved either in acetate metabolism or the transition to stationary phase. We grew these strains under identical fed-batch conditions to the highest cell densities achievable in 8 h using a predictive-plus-feedback-controlled computer algorithm that maintained glucose at a set-point of 0.5 g/l, as previously described. Wild-type strains, as well as mutants lacking the sigma(s) subunit of RNA polymerase (rpoS), grew reproducibly to high cell densities (44-50 g/l dry cell weights, DCWs). In contrast, a strain lacking acetate kinase (ackA) failed to reach densities greater than 8 g/l. Strains lacking other acetate metabolism genes (pta, acs, poxB, iciR, and fadR) achieved only medium cell densities (15-21 g/l DCWs). Complementation of either the acs or the ackA mutant restored wild-type high-cell-density growth, on a dry weight basis, poxB and fadR strains produced approximately threefold more acetate than did the wild-type strain. In contrast, the pta, acs, or rpoS strains produced significantly less acetate per cell dry weight than did the wild-type strain. Our results show that acetate metabolism plays a critical role during growth of E. coli cultures to high cell densities. They also demonstrate that cells do not require the sigma(s) regulon to grow to high cell densities, at least not under the conditions tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated mutations in the genes katG, inhA (regulatory and structural regions), and kasA and the oxyR-ahpC intergenic region of 97 isoniazid (INH)-resistant and 60 INH-susceptible Mycobacterium tuberculosis isolates obtained in two states in Brazil: São Paulo and Parana. PCR-single-strand conformational polymorphism (PCR-SSCP) was evaluated for screening mutations in regions of prevalence, including codons 315 and 463 of katG, the regulatory region and codons 16 and 94 of inhA, kasA, and the oxyR-ahpC intergenic region. DNA sequencing of PCR amplicons was performed for all isolates with altered PCR-SSCP profiles. Mutations in katG were found in 83 (85.6%) of the 97 INH-resistant isolates, including mutations in codon 315 that occurred in 60 (61.9%) of the INH-resistant isolates and 23 previously unreported katG mutations. Mutations in the inhA promoter region occurred in 25 (25.8%) of the INH-resistant isolates; 6.2% of the isolates had inhA structural gene mutations, and 10.3% had mutations in the oxyR-ahpC intergenic region (one, nucleotide -48, previously unreported). Polymorphisms in the kasA gene occurred in both INH-resistant and INH-susceptible isolates. The most frequent polymorphism encoded a G(269)A substitution. Although KatG(315) substitutions are predominant, novel mutations also appear to be responsible for INH resistance in the two states in Brazil. Since ca. 90.7% of the INH-resistant isolates had mutations identified by SSCP electrophoresis, this method may be a useful genotypic screen for INH resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the protein alpha-tropomyosin (Tm) can cause a disease known as familial hypertrophic cardiomyopathy. In order to understand how such mutations lead to protein dysfunction, three point mutations were introduced into cDNA encoding the human skeletal tropomyosin, and the recombinant Tms were produced at high levels in the yeast Pichia pastoris. Two mutations (A63V and K70T) were located in the N-terminal region of Tm and one (E180G) was located close to the calcium-dependent troponin T binding domain. The functional and structural properties of the mutant Tms were compared to those of the wild type protein. None of the mutations altered the head-to-tail polymerization, although slightly higher actin binding was observed in the mutant Tm K70T, as demonstrated in a cosedimentation assay. The mutations also did not change the cooperativity of the thin filament activation by increasing the concentrations of Ca2+. However, in the absence of troponin, all mutant Tms were less effective than the wild type in regulating the actomyosin subfragment 1 Mg2+ ATPase activity. Circular dichroism spectroscopy revealed no differences in the secondary structure of the Tms. However, the thermally induced unfolding, as monitored by circular dichroism or differential scanning calorimetry, demonstrated that the mutants were less stable than the wild type. These results indicate that the main effect of the mutations is related to the overall stability of Tm as a whole, and that the mutations have only minor effects on the cooperative interactions among proteins that constitute the thin filament.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B6D2F1 mice (45/group) were treated with N-butyl-N-(4- hydroxybutyl)nitrosamine (BBN) or uracil as follows: Group 1 received 0.05% BBN in drinking water for the entire experiment, Group 2 received 5 mg of BBN by gastric gavage in 0.1 mL of 20% ethanol twice per week for 10 wk, Group 3 received a 2.5% uracil-containing diet for the entire experiment, and Group 4 was controls (received 0.1 mL of 20% ethanol by gavage twice per week for 10 wk). The surviving mice in Group 1 were killed after week 26 and those in the other groups after week 30. By week 15, three of 11 Group 1 and one of 15 Group 2 mice had bladder carcinoma. By 26 and 30 wk, respectively, invasive carcinomas were observed in 33 of 34 and six of 21 mice in Groups 1 and 2 and renal pelvic carcinomas in 11 of 34 and three of 21 mice in Groups 1 and 2. Four of 19 uracil-treated mice had bladder nodular hyperplasia. By polymerase chain reaction-single-strand conformation polymorphism and sequence analyses, 16 of 20 and two of five bladder carcinomas from Groups 1 and 2, respectively, showed mutations in the p53 gene. Ha-ras mutation was present in one case. Loss of heterozygosity analysis with simple-sequence length polymorphism markers for chromosome 4 showed that 10 of 21, two of 15, and nine of 13 mice in Groups 1-3, respectively, had heterozygous or homozygous deletions. B6D2F1 mice are therefore susceptible to the urothelial carcinogenic effects of BBN and develop frequent p53 mutations and chromosome 4 deletions. Chromosome 4 deletions were also seen with uracil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrent abortion (RA) represents an intriguing problem in obstetric practice in which genetic and acquired factors may play a role. In the present investigation we sought to assess the possibility that inherited thrombophilia might determine the risk of RA. We therefore investigated the prevalence of two genetic abnormalities frequently associated with venous thrombosis [factor V Leiden (FVL) and factor II G20210A] in 56 patients with primary or secondary abortion and in 384 healthy control women. Polymerase chain reaction amplification followed by digestion with the restriction enzymes MnlI and HindIII was used to define the FVL and FII G20210A genotypes respectively. FVL was found in 4/56 patients (7.1%) and in 6/384 controls (1.6%), yielding an odds ratio (OR) for RA related to FVL of 4.9 [95% confidence interval (CI): 1.3-17.8]. FII G20210A was detected in 2/56 (3.6%) patients and in 4/384 (1%) controls (OR for RA: 3.5, CI: 0.6-19.7). In conclusion, FVL and FII G20210A mutations in patients with RA were more prevalent in comparison with controls. These data support a role for both mutations as determinants of the risk of RA and strengthen the notion that thrombophilia plays a role in this clinical entity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIFSA domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIFSA may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary hemochromatosis is a disorder of iron metabolism characterized by increased iron intake and progressive storage and is related to mutations in the HFE gene. Interactions between thalassemia and hemochromatosis may further increase iron overload. The ethnic background of the Brazilian population is heterogeneous and studies analyzing the simultaneous presence of HFE and thalassemia-related mutations have not been carried out. The aim of this study was to evaluate the prevalence of the H63D, S65C and C282Y mutations in the HFE gene among 102 individuals with alpha-thalassemia and 168 beta-thalassemia heterozygotes and to compare them with 173 control individuals without hemoglobinopathies. The allelic frequencies found in these three groups were 0.98, 2.38, and 0.29% for the C282Y mutation, 13.72, 13.70, and 9.54% for the H63D mutation, and 0, 0.60, and 0.87% for the S65C mutation, respectively. The chi-square test for multiple independent individuals indicated a significant difference among groups for the C282Y mutation, which was shown to be significant between the beta-thalassemia heterozygote and the control group by the Fisher exact test (P value = 0.009). The higher frequency of inheritance of the C282Y mutation in the HFE gene among beta-thalassemic patients may contribute to worsen the clinical picture of these individuals. In view of the characteristics of the Brazilian population, the present results emphasize the need to screen for HFE mutations in beta-thalassemia carriers.