56 resultados para Método numérico de partículas


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Through deductions and formulations of the equations governing the behavior of plates elastic and thin based Kirchhoff theory, it is evident that it is justifiable to the complication of the numerical methods considering the complexity of the equations that describe the physical behavior of these elements and obtaining analytical solutions for specific situations. This study is directed to the application of the numerical method which is based on discretizations to the simplest elements which results in the reduction of data to be processed from. The numerical method in question is the Boundary Element Methods (BEM), as the name suggests, the discretizations are only the edges of the elements. The BEM converts the complex integral equations, in sums of functions that reduce the unknowns at the nodes that define the ends of discrete elements, obtaining internal values to elements using interpolation functions. Confirming the need and usefulness of the BEM, apply, then the foundations necessary to the specific cases of Civil Engineering where traditional methods do not provide the desired support, leaving in question the security situations and economics of the projects

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Urucuia Aquifer System represents a strategic water source in western Bahia. Its baseflow is responsible for the flow rate of the main tributaries of São Francisco river left bank in the dry season, including the Rio Grande, its main tributary in Bahia state. This river has a hydrological regime heavily affected by groundwater and is located in a region with conflicts about water resources. The aquifers geology is constituted by neocretacious sandstones of Urucuia Group subdivided in Posse Formation and Serra das Araras Formation. The embasement is formed by neoproterozoic rocks of Bambuí Group. This work focuses on an important tool application, the mathematical model, whose function is represent approximately and suitably the reality so that can assist in different scenarios simulations and make predictions. Many studies developed in this basin provided the conceptual model basis including a full free aquifer, lithological and hydraulical homogeneity in entire basin, null flux at plateau borders and aquifer base. The finite element method is the numerical method used and FEFLOW the computational algorithm. The simulated area was discretized in a single layer with 27.357,6 km² (314.432 elements and 320.452 nodes) totaling a 4.249,89 km³ volume. Were utilized 21 observation wells from CERB to calibrate the model. The terrain topography was obtained by SRTM data and the impermeable base was generated by interpolation of descriptive profiles from wells and electric vertical drilling from previous studies. Works in this area obtained mean recharge rates varying approximately from 20% to 25% of average precipitation, thus the values of model recharge zones varying in this range. Were distributed 4 hydraulic conductivity zones: (K1) west zone with K=6x10-5 m/s; (K2) center-east zone with K=3x10-4 m/s; (K3) far east zone with K=5x10-4 m/s; e (K4) east-north zone with K=1x10-5 m/s. Thereby was incorporated to the final conceptual model...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to develop a numerical method to solve boundary value problems concerning to the use of dispersion model for describing the hydraulic behavior of chemical or biological reactors employed in the wastewater treatment. The numerical method was implemented in FORTRAN language generating a computational program which was applied to solve cases involving reaction kinetics of both integer and fractional orders. The developed method was able to solve the proposed problems evidencing to be a useful tool that provides more accurate design of wastewater treatment reactors

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main goal of this work is to investigate the effects of a nonlinear cubic term inserted in the Schrödinger equation for one-dimensional potentials studied in Quantum Mechanics textbooks. Being the main tool the numerical analysis in a large number of works, the analysis of this effect by this term in the potential itself, in order to work with an analytical solution, can be considered something new. For the harmonic oscillator potential, the analysis was made from a numerical method, comparing the result with the known results in the literature. In the case of the infinite well potential and the step potential, hoping to work with an analytical solution, by construction we started with the known wavefunction for the linear case noting the effects in the other physical quantities. The coupling of the physical quantities involved in this work has yielded, besides many complications in the calculations, a series of conditions on the existence and validity of the solutions in regard to the system possible configurations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)