43 resultados para Low earth orbits
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The dynamics of the restricted three-body Earth-Moon-particle problem predicts the existence of direct periodic orbits around the Lagrangian equilibrium point L1. From these orbits, we derive a set of trajectories that form links between the Earth and the Moon and are capable of performing transfers between terrestrial and lunar orbits, in addition to defining an escape route from the Earth-Moon system. When we consider a more complex and realistic dynamical system - the four-body Sun-Earth-Moon-particle (probe) problem - the trajectories have an expressive gain of inclination when they penetrate in the lunar influence sphere, thus allowing the insertion of probes into low-altitude lunar orbits with high inclinations, including polar orbits. In this study, we present these links and investigate some possibilities for performing an Earth-Moon transfer based on these trajectories. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The planar, circular, restricted three-body problem predicts the existence of periodic orbits around the Lagrangian equilibrium point L1. Considering the Earth-lunar-probe system, some of these orbits pass very close to the surfaces of the Earth and the Moon. These characteristics make it possible for these orbits, in spite of their instability, to be used in transfer maneuvers between Earth and lunar parking orbits. The main goal of this paper is to explore this scenario, adopting a more complex and realistic dynamical system, the four-body problem Sun-Earth-Moon-probe. We defined and investigated a set of paths, derived from the orbits around L1, which are capable of achieving transfer between low-altitude Earth (LEO) and lunar orbits, including high-inclination lunar orbits, at a low cost and with flight time between 13 and 15 days.
Resumo:
Electric propulsion is now a succeful method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Thruster, so called Hall Thruster or SPT (Stationary Plasma Thruster), was primarily conceived in USSR (the ancient Soviet Union) and, since then, it has been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work we present the main features of the Permanent Magnet Hall Thruster (PMHT) developed at the Plasma Laboratory of the University of Brasilia. The idea of using an array of permanent magnets, instead of an electromagnet, to produce a radial magnetic field inside the plasma channel of the thruster is very significant. It allows the development of a Hall Thruster with power consumption low enough to be used in small and medium size satellites. Description of a new vacuum chamber used to test the second prototype of the PMHT (PHALL II) will be given. PHALL II has an aluminum plasma chamber and is smaller with 15 cm diameter and will contain rare earth magnets. We will show plasma density and temperature space profiles inside and outside the thruster channel. Ion temperature measurements based on Doppler broadening of spectral lines and ion energy measurements are also shown. Based on the measured plasma parameters we constructed an aptitude figure of the PMHT. It contains the specific impulse, total thrust, propellant flow rate and power consumption necessary for orbit raising of satellites. Based on previous studies of geosyncronous satellite orbit positioning we perform numerical simulations of satellite orbit raising from an altitude of 700 km to 36000 km using a PMHT operating in the 100 mN - 500 mN thrust range. In order to perform these calculations integration techniques were used. The main simulation paraters were orbit raising time, fuel mass, total satellite mass, thrust and exaust velocity. We conclude comparing our results with results obtainned with known space missions performed with Hall Thrusters. © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a semi-analytical and numerical study of the perturbation caused in a spacecraft by a third-body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second order. The important reason for this procedure is to eliminate terms due to the short periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long-time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. An analysis of the stability of near-circular orbits is made, and a study to know under which conditions this orbit remains near circular completes this analysis. A study of the equatorial orbits is also performed. Copyright (C) 2008 R. C. Domingos et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The lunar sphere of influence, whose radius is some 66,300 km, has regions of stable orbits around the Moon and also regions that contain trajectories which, after spending some time around the Moon, escape and are later recaptured by lunar gravity. Both the escape and the capture occur along the Lagrangian equilibrium points L1 and L2. In this study, we mapped out the region of lunar influence considering the restricted three-body Earth-Moon-particle problem and the four-body Sun-Earth-Moon-particle (probe) problem. We identified the stable trajectories, and the escape and capture trajectories through the L I and L2 in plots of the eccentricity versus the semi-major axis as a function of the time that the energy of the osculating lunar trajectory in the two-body Moon-particle problem remains negative. We also investigated the properties of these routes, giving special attention to the fact that they supply a natural mechanism for performing low-energy transfers between the Earth and the Moon, and can thus be useful on a great number of future missions. (C) 2007 Published by Elsevier Ltd on behalf of COSPAR.
Resumo:
In the present work we explore regions of distant direct stable orbits around the Moon. First, the location and size of apparently stable regions are searched for numerically, adopting the approach of temporary capture time presented in Vieira Neto & Winter (2001). The study is made in the framework of the planar, circular, restricted three-body problem, Earth-Moon-particle. Regions of the initial condition space whose trajectories are apparently stable are determined. The criterion adopted was that the trajectories do not escape from the Moon during an integration period of 10(4) days. Using Poincare surface of sections the reason for the existence of the two stable regions found is studied. The stability of such regions proved to be due to two families of simple periodic orbits, h1 and h2, and the associated quasi-periodic orbits that oscillate around them. The robustness of the stability of the larger region, h2, is tested with the inclusion of the solar perturbation. The size of the region decreases, but it is still significant in size and can be useful in spacecraft missions.
Resumo:
In the present work we consider a dynamical system of mum size particles around the Earth subject to the effects of radiation pressure. Our main goal is to study the evolution of its relative velocity with respect to the co-planar circular orbits that it crosses. The particles were initially in a circular geostationary orbit, and the particles size were in the range between 1 and 100 mum. The radiation pressure produces variations in its eccentricity, resulting in a change in its orbital velocity. The results indicated the maximum linear momentum and kinetic energy increases as the particle size increases. For a particle of 1 mum the kinetic energy is approximately 1.56 x 10(-7) J and the momentum is 6.27 x 10(-11) kg m/s and for 100 mum the energy is approximately 1.82 x 10(-4) J and the momentum is 2.14 x 10(-6) kg m/s. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The information on the project being developed in Brazil for a flight to binary or triple near-Earth asteroid is presented. The project plans to launch a spacecraft into an orbit around the asteroid and to study the asteroid and its satellite within six months. Main attention is concentrated on the analysis of trajectories of flight to asteroids with both impulsive and low thrust in the period 2013-2020. For comparison, the characteristics of flights to the (45) Eugenia triple asteroid of the Main Belt are also given.
Resumo:
We report the successful fabrication of planar waveguides in rare-earth doped fluoroindate glass substrates. A new procedure for waveguide fabrication using a thermally evaporated AgF nonmetallic film was developed. The refractive index changes of more than 0.03, associated to low propagation losses achieved, open new perspectives and show the potentiality of using this glass family toward further developments in fabrication and design of integrated optical devices for optical communication wavelengths.© 1995 American Institute of Physics.
Resumo:
The present work deals with a family of simply periodic orbits around the Moon in the rotating Earth Moon-particle system. Taking the framework of the planar, circular, restricted three-body problem, we follow the evolution of this family of periodic orbits using the numerical technique of Poincaré surface of section. The maximum amplitude of oscillation about the periodic orbits are determined and can be used as a parameter to measure the degree of stability in the phase space for such orbits. Despite the fact that the whole family of periodic orbits remain stable, there is a dichotomy in the quasi-periodic ones at the Jacobi constant Cj = 2.85. The quasi-periodic orbits with Cj < 2.85 oscillate around the periodic orbits in a different way from those with Cj > 2.85. © 1999 Elsevier Science Ltd. All rights reserved.